Source code for vllm.inputs.data

from typing import (TYPE_CHECKING, Generic, Iterable, List, Optional, Tuple,
                    Union)

from typing_extensions import NotRequired, TypedDict, TypeVar

if TYPE_CHECKING:
    from vllm.multimodal import MultiModalDataDict


[docs]class TextPrompt(TypedDict): """Schema for a text prompt.""" prompt: str """The input text to be tokenized before passing to the model.""" multi_modal_data: NotRequired["MultiModalDataDict"] """ Optional multi-modal data to pass to the model, if the model supports it. """
[docs]class TokensPrompt(TypedDict): """Schema for a tokenized prompt.""" prompt_token_ids: List[int] """A list of token IDs to pass to the model.""" multi_modal_data: NotRequired["MultiModalDataDict"] """ Optional multi-modal data to pass to the model, if the model supports it. """
SingletonPrompt = Union[str, TextPrompt, TokensPrompt] """ Set of possible schemas for a single LLM input: - A text prompt (:class:`str` or :class:`TextPrompt`) - A tokenized prompt (:class:`TokensPrompt`) Note that "singleton" is as opposed to a data structure which encapsulates multiple prompts, i.e. of the sort which may be utilized for encoder/decoder models when the user desires to express both the encoder & decoder prompts explicitly, i.e. :class:`ExplicitEncoderDecoderPrompt` A prompt of type :class:`SingletonPrompt` may be employed as (1) input to a decoder-only model, (2) input to the encoder of an encoder/decoder model, in the scenario where the decoder-prompt is not specified explicitly, or (3) as a member of a larger data structure encapsulating more than one prompt, i.e. :class:`ExplicitEncoderDecoderPrompt` """ _T1_co = TypeVar("_T1_co", bound=SingletonPrompt, default=SingletonPrompt, covariant=True) _T2_co = TypeVar("_T2_co", bound=SingletonPrompt, default=SingletonPrompt, covariant=True) # TODO: Make fields ReadOnly once mypy supports it class ExplicitEncoderDecoderPrompt(TypedDict, Generic[_T1_co, _T2_co]): """ Represents an encoder/decoder model input prompt, comprising an explicit encoder prompt and a decoder prompt. The encoder and decoder prompts, respectively, may be formatted according to any of the :class:`SingletonPrompt` schemas, and are not required to have the same schema. Only the encoder prompt may have multi-modal data. Note that an :class:`ExplicitEncoderDecoderPrompt` may not be used as an input to a decoder-only model, and that the :code:`encoder_prompt` and :code:`decoder_prompt` fields of this data structure themselves must be :class:`SingletonPrompt` instances. """ encoder_prompt: _T1_co decoder_prompt: Optional[_T2_co] PromptType = Union[SingletonPrompt, ExplicitEncoderDecoderPrompt] """ Set of possible schemas for an LLM input, including both decoder-only and encoder/decoder input types: - A text prompt (:class:`str` or :class:`TextPrompt`) - A tokenized prompt (:class:`TokensPrompt`) - A single data structure containing both an encoder and a decoder prompt (:class:`ExplicitEncoderDecoderPrompt`) """
[docs]class LLMInputs(TypedDict): """ The inputs in :class:`~vllm.LLMEngine` before they are passed to the model executor. This specifies the data required for decoder-only models. """ prompt_token_ids: List[int] """The token IDs of the prompt.""" prompt: NotRequired[Optional[str]] """ The original prompt text corresponding to the token IDs, if available. """ multi_modal_data: NotRequired[Optional["MultiModalDataDict"]] """ Optional multi-modal data to pass to the model, if the model supports it. """
class EncoderDecoderLLMInputs(LLMInputs): """ The inputs in :class:`~vllm.LLMEngine` before they are passed to the model executor. This specifies the required data for encoder-decoder models. """ encoder_prompt_token_ids: List[int] """The token IDs of the encoder prompt.""" encoder_prompt: NotRequired[Optional[str]] """ The original encoder prompt text corresponding to the token IDs, if available. """ encoder_multi_modal_data: NotRequired[Optional["MultiModalDataDict"]] """ Optional multi-modal data to pass to the encoder model, if the model supports it. """ _T1 = TypeVar("_T1", bound=SingletonPrompt, default=SingletonPrompt) _T2 = TypeVar("_T2", bound=SingletonPrompt, default=SingletonPrompt) def build_explicit_enc_dec_prompt( encoder_prompt: _T1, decoder_prompt: Optional[_T2], ) -> ExplicitEncoderDecoderPrompt[_T1, _T2]: return ExplicitEncoderDecoderPrompt(encoder_prompt=encoder_prompt, decoder_prompt=decoder_prompt) def zip_enc_dec_prompts( enc_prompts: Iterable[_T1], dec_prompts: Iterable[Optional[_T2]], ) -> List[ExplicitEncoderDecoderPrompt[_T1, _T2]]: """ Zip encoder and decoder prompts together into a list of :class:`ExplicitEncoderDecoderPrompt` instances. """ return [ build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt) for (encoder_prompt, decoder_prompt) in zip(enc_prompts, dec_prompts) ] def to_enc_dec_tuple_list( enc_dec_prompts: Iterable[ExplicitEncoderDecoderPrompt[_T1, _T2]], ) -> List[Tuple[_T1, Optional[_T2]]]: return [(enc_dec_prompt["encoder_prompt"], enc_dec_prompt["decoder_prompt"]) for enc_dec_prompt in enc_dec_prompts] def __getattr__(name: str): if name == "PromptInput": import warnings msg = ("PromptInput has been renamed to PromptType. " "The original name will be removed in an upcoming version.") warnings.warn(DeprecationWarning(msg), stacklevel=2) return PromptType raise AttributeError(f"module {__name__!r} has no attribute {name!r}")