vllm.config
DistributedExecutorBackend
module-attribute
¶
DistributedExecutorBackend = Literal[
"ray", "mp", "uni", "external_launcher"
]
GuidedDecodingBackend
module-attribute
¶
GuidedDecodingBackend = Literal[
GuidedDecodingBackendV0, GuidedDecodingBackendV1
]
GuidedDecodingBackendV0
module-attribute
¶
GuidedDecodingBackendV0 = Literal[
"auto",
"outlines",
"lm-format-enforcer",
"xgrammar",
"guidance",
]
GuidedDecodingBackendV1
module-attribute
¶
GuidedDecodingBackendV1 = Literal[
"auto", "xgrammar", "guidance"
]
HfOverrides
module-attribute
¶
ModelDType
module-attribute
¶
ModelDType = Literal[
"auto",
"half",
"float16",
"bfloat16",
"float",
"float32",
]
RunnerType
module-attribute
¶
RunnerType = Literal[
"generate", "pooling", "draft", "transcription"
]
SpeculativeAcceptanceMethod
module-attribute
¶
SpeculativeAcceptanceMethod = Literal[
"rejection_sampler", "typical_acceptance_sampler"
]
SpeculativeMethod
module-attribute
¶
SpeculativeMethod = Literal[
"ngram",
"eagle",
"eagle3",
"medusa",
"mlp_speculator",
"draft_model",
"deepseek_mtp",
]
TaskOption
module-attribute
¶
TaskOption = Literal[
"auto",
"generate",
"embedding",
"embed",
"classify",
"score",
"reward",
"transcription",
]
_FLOAT16_NOT_SUPPORTED_MODELS
module-attribute
¶
_FLOAT16_NOT_SUPPORTED_MODELS = {
"gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
"plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
"glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
}
_RUNNER_TASKS
module-attribute
¶
_RUNNER_TASKS: dict[RunnerType, list[_ResolvedTask]] = {
"generate": ["generate"],
"pooling": ["embed", "classify", "score", "reward"],
"draft": ["draft"],
"transcription": ["transcription"],
}
_ResolvedTask
module-attribute
¶
_ResolvedTask = Literal[
"generate",
"embed",
"classify",
"score",
"reward",
"draft",
"transcription",
]
_STR_DTYPE_TO_TORCH_DTYPE
module-attribute
¶
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": float16,
"float16": float16,
"float": float32,
"float32": float32,
"bfloat16": bfloat16,
}
_TASK_RUNNER
module-attribute
¶
_TASK_RUNNER: dict[_ResolvedTask, RunnerType] = {
task: _OuAlGfor(runner, tasks) in items()
for task in tasks
}
CacheConfig
¶
Configuration for the KV cache.
Source code in vllm/config.py
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 |
|
block_size
class-attribute
instance-attribute
¶
block_size: SkipValidation[BlockSize] = None
Size of a contiguous cache block in number of tokens. This is ignored on
neuron devices and set to --max-model-len
. On CUDA devices, only block
sizes up to 32 are supported. On HPU devices, block size defaults to 128.
This config has no static default. If left unspecified by the user, it will
be set in Platform.check_and_update_configs()
based on the current
platform.
cache_dtype
class-attribute
instance-attribute
¶
cache_dtype: CacheDType = 'auto'
Data type for kv cache storage. If "auto", will use model data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ROCm (AMD GPU) supports fp8 (=fp8_e4m3).
calculate_kv_scales
class-attribute
instance-attribute
¶
calculate_kv_scales: bool = False
This enables dynamic calculation of k_scale
and v_scale
when
kv_cache_dtype is fp8. If False
, the scales will be loaded from the model
checkpoint if available. Otherwise, the scales will default to 1.0.
cpu_kvcache_space_bytes
class-attribute
instance-attribute
¶
(CPU backend only) CPU key-value cache space.
cpu_offload_gb
class-attribute
instance-attribute
¶
cpu_offload_gb: float = 0
The space in GiB to offload to CPU, per GPU. Default is 0, which means no offloading. Intuitively, this argument can be seen as a virtual way to increase the GPU memory size. For example, if you have one 24 GB GPU and set this to 10, virtually you can think of it as a 34 GB GPU. Then you can load a 13B model with BF16 weight, which requires at least 26GB GPU memory. Note that this requires fast CPU-GPU interconnect, as part of the model is loaded from CPU memory to GPU memory on the fly in each model forward pass.
enable_prefix_caching
class-attribute
instance-attribute
¶
Whether to enable prefix caching. Disabled by default for V0. Enabled by default for V1.
gpu_memory_utilization
class-attribute
instance-attribute
¶
gpu_memory_utilization: float = 0.9
The fraction of GPU memory to be used for the model executor, which can range from 0 to 1. For example, a value of 0.5 would imply 50% GPU memory utilization. If unspecified, will use the default value of 0.9. This is a per-instance limit, and only applies to the current vLLM instance. It does not matter if you have another vLLM instance running on the same GPU. For example, if you have two vLLM instances running on the same GPU, you can set the GPU memory utilization to 0.5 for each instance.
is_attention_free
class-attribute
instance-attribute
¶
is_attention_free: bool = False
Whether the model is attention-free. This is primarily set in
ModelConfig
and that value should be manually duplicated here.
num_cpu_blocks
class-attribute
instance-attribute
¶
The number of blocks to allocate for CPU memory.
num_gpu_blocks
class-attribute
instance-attribute
¶
The number of blocks to allocate for GPU memory.
num_gpu_blocks_override
class-attribute
instance-attribute
¶
Number of GPU blocks to use. This overrides the profiled num_gpu_blocks
if specified. Does nothing if None
. Used for testing preemption.
prefix_caching_hash_algo
class-attribute
instance-attribute
¶
prefix_caching_hash_algo: PrefixCachingHashAlgo = 'builtin'
Set the hash algorithm for prefix caching:
-
"builtin" is Python's built-in hash.
-
"sha256" is collision resistant but with certain overheads.
sliding_window
class-attribute
instance-attribute
¶
Sliding window size for the KV cache. This is primarily set in
ModelConfig
and that value should be manually duplicated here.
swap_space
class-attribute
instance-attribute
¶
swap_space: float = 4
Size of the CPU swap space per GPU (in GiB).
__post_init__
¶
_verify_args
¶
_verify_args() -> Self
Source code in vllm/config.py
_verify_cache_dtype
¶
Source code in vllm/config.py
_verify_prefix_caching
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
metrics_info
¶
verify_with_parallel_config
¶
verify_with_parallel_config(
parallel_config: ParallelConfig,
) -> None
Source code in vllm/config.py
CompilationConfig
¶
Configuration for compilation. It has three parts:
- Top-level Compilation control:
- CudaGraph capture:
- Inductor compilation:
use_inductor
compile_sizes
inductor_compile_config
inductor_passes
- custom inductor passes
Why we have different sizes for cudagraph and inductor: - cudagraph: a cudagraph captured for a specific size can only be used for the same size. We need to capture all the sizes we want to use. - inductor: a graph compiled by inductor for a general shape can be used for different sizes. Inductor can also compile for specific sizes, where it can have more information to optimize the graph with fully static shapes. However, we find the general shape compilation is sufficient for most cases. It might be beneficial to compile for certain small batchsizes, where inductor is good at optimizing.
Source code in vllm/config.py
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 |
|
backend
class-attribute
instance-attribute
¶
backend: str = ''
The backend for compilation. It needs to be a string:
- "" (empty string): use the default backend.
- "eager"/"openxla"/...: use the specified backend registered in PyTorch.
- "full.module.name": a qualified name which can be used to import the
backend function. We use string to avoid serialization issues when using compilation in a distributed setting. When the compilation level is 1 or 2, the backend is used for the compilation directly (it sees the whole graph). When the compilation level is 3, the backend is used for the piecewise compilation (it sees a part of the graph).
bs_to_padded_graph_size
class-attribute
instance-attribute
¶
optimization: Intuitively, bs_to_padded_graph_size should be dict[int, int]. since we know all keys are in a range [0, max_capture_size], we can optimize it to list[int] for better lookup performance.
cache_dir
class-attribute
instance-attribute
¶
cache_dir: str = ''
The directory to store the compiled graph, to accelerate Inductor compilation. By default, it will use model-related information to generate a cache directory.
compilation_time
class-attribute
instance-attribute
¶
time taken for compilation
compile_sizes
class-attribute
instance-attribute
¶
Sizes to compile for inductor. In addition to integers, it also supports "cudagraph_capture_sizes" to specify the sizes for cudagraph capture.
cudagraph_capture_sizes
class-attribute
instance-attribute
¶
Sizes to capture cudagraph. - None (default): capture sizes are inferred from vllm config. - list[int]: capture sizes are specified as given.
cudagraph_copy_inputs
class-attribute
instance-attribute
¶
cudagraph_copy_inputs: bool = False
Whether to copy input tensors for cudagraph. If the caller can guarantee that the same input buffers are always used, it can set this to False. Otherwise, it should set this to True, and the compiler will copy the input to an internally managed buffer. Default is False.
cudagraph_num_of_warmups
class-attribute
instance-attribute
¶
cudagraph_num_of_warmups: int = 0
Number of warmup runs for cudagraph. It means the first several runs will be treated as warmup runs. Only after that, the execution will be recorded, and the recorded cudagraph will be used for subsequent runs.
custom_ops
class-attribute
instance-attribute
¶
Fine-grained control over which custom ops to enable/disable. Use 'all' to enable all, 'none' to disable all. Also specify a list of custom op names to enable (prefixed with a '+'), or disable (prefixed with a '-'). Examples:
- 'all,-op1' to enable all except op1
- 'none,+op1,+op2' to enable only op1 and op2
By default, all custom ops are enabled when running without Inductor and disabled when running with Inductor (compile_level >= Inductor).
debug_dump_path
class-attribute
instance-attribute
¶
debug_dump_path: str = ''
The path to dump the debug information.
disabled_custom_ops
class-attribute
instance-attribute
¶
custom ops that are disabled
enabled_custom_ops
class-attribute
instance-attribute
¶
custom ops that are enabled
full_cuda_graph
class-attribute
instance-attribute
¶
full_cuda_graph: bool = False
whether to use a full cuda graph for the entire forward pass rather than splitting certain operations such as attention into subgraphs. Thus this flag cannot be used together with splitting_ops. This may provide performance benefits for smaller models.
inductor_compile_config
class-attribute
instance-attribute
¶
Additional configurations for inductor. - None: use default configurations.
inductor_passes
class-attribute
instance-attribute
¶
Additional passes for inductor. It is a dictionary
from pass name to pass function qualified name. We use function
name because the config uses JSON format. If we pass the config
from Python, functions can also be passed directly via Python object
constructor, e.g. CompilationConfig(inductor_passes={"a": func})
.
level
class-attribute
instance-attribute
¶
level: int = 0
The level of compilation:
- 0: no compilation.
- 1: dynamo as is.
- 2: dynamo once.
- 3: piecewise compilation.
local_cache_dir
class-attribute
instance-attribute
¶
local cache dir for each rank
max_capture_size
class-attribute
instance-attribute
¶
not configurable, computed after init
pass_config
class-attribute
instance-attribute
¶
pass_config: PassConfig = field(default_factory=PassConfig)
Custom inductor passes, see PassConfig for more details
splitting_ops
class-attribute
instance-attribute
¶
A list of ops to split the full graph into subgraphs, used in piecewise compilation.
static_forward_context
class-attribute
instance-attribute
¶
Per-model forward context Map from layer name to layer objects that need to be accessed outside model code, e.g., Attention, FusedMOE when dp_size>1.
traced_files
class-attribute
instance-attribute
¶
files that are traced for compilation
use_cudagraph
class-attribute
instance-attribute
¶
use_cudagraph: bool = field(
default_factory=lambda: VLLM_USE_V1
)
Whether to use cudagraph inside compilation. - False: cudagraph inside compilation is not used. - True: cudagraph inside compilation is used. It requires that all input buffers have fixed addresses, and all splitting ops write their outputs to input buffers. In the vLLM V1 Engine, this flag only applies for CompilationLevel.PIECEWISE (aka -O3). Note that this is orthogonal to the cudagraph capture logic outside of compilation. TODO: move outside cudagraph logic into compilation. torch.compile will handle cudagraph capture logic in the future.
use_inductor
class-attribute
instance-attribute
¶
use_inductor: bool = True
Whether to use inductor compilation:
- False: inductor compilation is not used. graph runs in eager.
- True: inductor compilation is used. one graph for symbolic shape is compiled. In addition, compile for compile_sizes, using configurations in inductor_compile_config.
__post_init__
¶
Source code in vllm/config.py
__repr__
¶
__repr__() -> str
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
from_cli
classmethod
¶
from_cli(cli_value: str) -> CompilationConfig
Parse the CLI value for the compilation config.
Source code in vllm/config.py
init_backend
¶
init_backend(
vllm_config: VllmConfig,
) -> Union[str, Callable]
Source code in vllm/config.py
init_with_cudagraph_sizes
¶
To complete the initialization of config, we need to know the cudagraph sizes.
Source code in vllm/config.py
set_splitting_ops_for_v1
¶
Source code in vllm/config.py
CompilationLevel
¶
Source code in vllm/config.py
DecodingConfig
¶
Dataclass which contains the decoding strategy of the engine.
Source code in vllm/config.py
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 |
|
backend
class-attribute
instance-attribute
¶
backend: GuidedDecodingBackend = (
"auto" if VLLM_USE_V1 else "xgrammar"
)
Which engine will be used for guided decoding (JSON schema / regex etc) by default. With "auto", we will make opinionated choices based on request contents and what the backend libraries currently support, so the behavior is subject to change in each release.
disable_additional_properties
class-attribute
instance-attribute
¶
disable_additional_properties: bool = False
If True
, the guidance
backend will not use additionalProperties
in the JSON schema. This is only supported for the guidance
backend and
is used to better align its behaviour with outlines
and xgrammar
.
disable_any_whitespace
class-attribute
instance-attribute
¶
disable_any_whitespace: bool = False
If True
, the model will not generate any whitespace during guided
decoding. This is only supported for xgrammar and guidance backends.
disable_fallback
class-attribute
instance-attribute
¶
disable_fallback: bool = False
If True
, vLLM will not fallback to a different backend on error.
reasoning_backend
class-attribute
instance-attribute
¶
reasoning_backend: str = ''
Select the reasoning parser depending on the model that you're using. This is used to parse the reasoning content into OpenAI API format.
__post_init__
¶
Source code in vllm/config.py
_extract_backend_options
¶
Extract backend options from the backend string.
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
DeviceConfig
¶
Configuration for the device to use for vLLM execution.
Source code in vllm/config.py
device
class-attribute
instance-attribute
¶
Device type for vLLM execution. This parameter is deprecated and will be removed in a future release. It will now be set automatically based on the current platform.
device_type
class-attribute
instance-attribute
¶
Device type from the current platform. This is set in
__post_init__
.
__post_init__
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
KVEventsConfig
¶
Configuration for KV event publishing.
Source code in vllm/config.py
buffer_steps
class-attribute
instance-attribute
¶
buffer_steps: int = 10000
The number of steps to cache for replay endpoint. Will only save events from the last N steps for the replay endpoint.
enable_kv_cache_events
class-attribute
instance-attribute
¶
enable_kv_cache_events: bool = False
If True, enable KV cache events for tracking block storage and removal. Events can be published externally by zmq using the event publisher config.
endpoint
class-attribute
instance-attribute
¶
endpoint: str = 'tcp://*:5557'
The zmq endpoint to use for publishing kv events.
hwm
class-attribute
instance-attribute
¶
hwm: int = 100000
The zmq high water mark for the event publisher. After queueing N events, events will start dropping if the consumer is not keeping up.
max_queue_size
class-attribute
instance-attribute
¶
max_queue_size: int = 100000
The maximum number of events to queue while waiting for publishing.
publisher
class-attribute
instance-attribute
¶
publisher: str = 'null'
The publisher to use for publishing kv events. Can be "null", "zmq".
replay_endpoint
class-attribute
instance-attribute
¶
The zmq endpoint to use for replaying kv events.
KVTransferConfig
¶
Configuration for distributed KV cache transfer.
Source code in vllm/config.py
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 |
|
engine_id
class-attribute
instance-attribute
¶
The engine id for KV transfers.
kv_buffer_device
class-attribute
instance-attribute
¶
The device used by kv connector to buffer the KV cache. Currently only support 'cuda'.
kv_buffer_size
class-attribute
instance-attribute
¶
kv_buffer_size: float = 1000000000.0
The buffer size for TorchDistributedConnector. Measured in number of bytes. Recommended value: 1e9 (about 1GB).
kv_connector
class-attribute
instance-attribute
¶
The KV connector for vLLM to transmit KV caches between vLLM instances.
kv_connector_extra_config
class-attribute
instance-attribute
¶
any extra config that the connector may need.
kv_connector_module_path
class-attribute
instance-attribute
¶
The Python module path to dynamically load the KV connector from. Only supported in V1.
kv_ip
class-attribute
instance-attribute
¶
kv_ip: str = '127.0.0.1'
The KV connector ip, used to build distributed connection.
kv_parallel_size
class-attribute
instance-attribute
¶
kv_parallel_size: int = 1
The number of parallel instances for KV cache transfer. For PyNcclConnector, this should be 2.
kv_port
class-attribute
instance-attribute
¶
kv_port: int = 14579
The KV connector port, used to build distributed connection.
kv_rank
class-attribute
instance-attribute
¶
The rank of this vLLM instance in the KV cache transfer. Typical value: 0 for prefill instance, 1 for decode instance. Currently only 1P1D is supported.
kv_role
class-attribute
instance-attribute
¶
Whether this vLLM instance produces, consumes KV cache, or both. Choices are 'kv_producer', 'kv_consumer', and 'kv_both'.
__post_init__
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
LoRAConfig
¶
Configuration for LoRA.
Source code in vllm/config.py
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 |
|
bias_enabled
class-attribute
instance-attribute
¶
bias_enabled: bool = False
Enable bias for LoRA adapters.
fully_sharded_loras
class-attribute
instance-attribute
¶
fully_sharded_loras: bool = False
By default, only half of the LoRA computation is sharded with tensor parallelism. Enabling this will use the fully sharded layers. At high sequence length, max rank or tensor parallel size, this is likely faster.
long_lora_scaling_factors
class-attribute
instance-attribute
¶
Specify multiple scaling factors (which can be different from base model scaling factor - see eg. Long LoRA) to allow for multiple LoRA adapters trained with those scaling factors to be used at the same time. If not specified, only adapters trained with the base model scaling factor are allowed.
lora_dtype
class-attribute
instance-attribute
¶
Data type for LoRA. If auto, will default to base model dtype.
lora_extra_vocab_size
class-attribute
instance-attribute
¶
lora_extra_vocab_size: int = 256
Maximum size of extra vocabulary that can be present in a LoRA adapter (added to the base model vocabulary).
lora_vocab_padding_size
class-attribute
¶
lora_vocab_padding_size: int = get_lora_vocab_padding_size()
max_cpu_loras
class-attribute
instance-attribute
¶
Maximum number of LoRAs to store in CPU memory. Must be >= than
max_loras
.
max_loras
class-attribute
instance-attribute
¶
max_loras: int = 1
Max number of LoRAs in a single batch.
__post_init__
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
verify_lora_support
¶
verify_with_cache_config
¶
verify_with_cache_config(cache_config: CacheConfig)
verify_with_model_config
¶
verify_with_model_config(model_config: ModelConfig)
LoadConfig
¶
Configuration for loading the model weights.
Source code in vllm/config.py
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 |
|
download_dir
class-attribute
instance-attribute
¶
Directory to download and load the weights, default to the default cache directory of Hugging Face.
ignore_patterns
class-attribute
instance-attribute
¶
The list of patterns to ignore when loading the model. Default to "original/*/" to avoid repeated loading of llama's checkpoints.
load_format
class-attribute
instance-attribute
¶
load_format: Union[str, LoadFormat, BaseModelLoader] = (
AUTO.value
)
The format of the model weights to load:
-
"auto" will try to load the weights in the safetensors format and fall back to the pytorch bin format if safetensors format is not available.
-
"pt" will load the weights in the pytorch bin format.
-
"safetensors" will load the weights in the safetensors format.
-
"npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading.
-
"dummy" will initialize the weights with random values, which is mainly for profiling.
-
"tensorizer" will use CoreWeave's tensorizer library for fast weight loading. See the Tensorize vLLM Model script in the Examples section for more information.
-
"runai_streamer" will load the Safetensors weights using Run:ai Model Streamer.
-
"bitsandbytes" will load the weights using bitsandbytes quantization.
-
"sharded_state" will load weights from pre-sharded checkpoint files, supporting efficient loading of tensor-parallel models.
-
"gguf" will load weights from GGUF format files (details specified in https://github.com/ggml-org/ggml/blob/master/docs/gguf.md).
-
"mistral" will load weights from consolidated safetensors files used by Mistral models.
model_loader_extra_config
class-attribute
instance-attribute
¶
model_loader_extra_config: Union[dict, TensorizerConfig] = (
field(default_factory=dict)
)
Extra config for model loader. This will be passed to the model loader corresponding to the chosen load_format.
pt_load_map_location
class-attribute
instance-attribute
¶
pt_load_map_location: the map location for loading pytorch checkpoint, to
support loading checkpoints can only be loaded on certain devices like
"cuda", this is equivalent to {"": "cuda"}. Another supported format is
mapping from different devices like from GPU 1 to GPU 0:
{"cuda:1": "cuda:0"}. Note that when passed from command line, the strings
in dictionary needs to be double quoted for json parsing. For more details,
see original doc for map_location
in https://pytorch.org/docs/stable/generated/torch.load.html
use_tqdm_on_load
class-attribute
instance-attribute
¶
use_tqdm_on_load: bool = True
Whether to enable tqdm for showing progress bar when loading model weights.
__post_init__
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
LoadFormat
¶
Source code in vllm/config.py
RUNAI_STREAMER_SHARDED
class-attribute
instance-attribute
¶
ModelConfig
¶
Configuration for the model.
Source code in vllm/config.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 |
|
allowed_local_media_path
class-attribute
instance-attribute
¶
allowed_local_media_path: str = ''
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
code_revision
class-attribute
instance-attribute
¶
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
config_format
class-attribute
instance-attribute
¶
config_format: Union[str, ConfigFormat] = AUTO.value
The format of the model config to load:
-
"auto" will try to load the config in hf format if available else it will try to load in mistral format.
-
"hf" will load the config in hf format.
-
"mistral" will load the config in mistral format.
disable_cascade_attn
class-attribute
instance-attribute
¶
disable_cascade_attn: bool = False
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it's beneficial.
disable_mm_preprocessor_cache
class-attribute
instance-attribute
¶
disable_mm_preprocessor_cache: bool = False
If True
, disable caching of the multi-modal preprocessor/mapper (not
recommended).
disable_sliding_window
class-attribute
instance-attribute
¶
disable_sliding_window: bool = False
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
dtype
class-attribute
instance-attribute
¶
dtype: Union[ModelDType, dtype] = 'auto'
Data type for model weights and activations:
-
"auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
-
"half" for FP16. Recommended for AWQ quantization.
-
"float16" is the same as "half".
-
"bfloat16" for a balance between precision and range.
-
"float" is shorthand for FP32 precision.
-
"float32" for FP32 precision.
enable_prompt_embeds
class-attribute
instance-attribute
¶
enable_prompt_embeds: bool = False
If True
, enables passing text embeddings as inputs via the
prompt_embeds
key. Note that enabling this will double the time required
for graph compilation.
enable_sleep_mode
class-attribute
instance-attribute
¶
enable_sleep_mode: bool = False
Enable sleep mode for the engine (only cuda platform is supported).
enforce_eager
class-attribute
instance-attribute
¶
enforce_eager: bool = False
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
generation_config
class-attribute
instance-attribute
¶
generation_config: str = 'auto'
The folder path to the generation config. Defaults to "auto"
, the
generation config will be loaded from model path. If set to "vllm"
, no
generation config is loaded, vLLM defaults will be used. If set to a folder
path, the generation config will be loaded from the specified folder path.
If max_new_tokens
is specified in generation config, then it sets a
server-wide limit on the number of output tokens for all requests.
hf_config_path
class-attribute
instance-attribute
¶
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
hf_overrides
class-attribute
instance-attribute
¶
hf_overrides: HfOverrides = field(default_factory=dict)
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
hf_token
class-attribute
instance-attribute
¶
The token to use as HTTP bearer authorization for remote files . If
True
, will use the token generated when running huggingface-cli login
(stored in ~/.huggingface
).
limit_mm_per_prompt
class-attribute
instance-attribute
¶
Maximum number of data items per modality per prompt. Only applicable for multimodal models.
logits_processor_pattern
class-attribute
instance-attribute
¶
Optional regex pattern specifying valid logits processor qualified names
that can be passed with the logits_processors
extra completion argument.
Defaults to None
, which allows no processors.
max_logprobs
class-attribute
instance-attribute
¶
max_logprobs: int = 20
Maximum number of log probabilities to return when logprobs
is
specified in SamplingParams
. The default value comes the default for the
OpenAI Chat Completions API.
max_model_len
class-attribute
instance-attribute
¶
max_model_len: SkipValidation[int] = None
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len
, supports k/m/g/K/M/G in human-readable
format. Examples:
-
1k -> 1000
-
1K -> 1024
-
25.6k -> 25,600
max_seq_len_to_capture
class-attribute
instance-attribute
¶
max_seq_len_to_capture: int = 8192
Maximum sequence len covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode. Additionally for encoder-decoder models, if the sequence length of the encoder input is larger than this, we fall back to the eager mode.
mm_processor_kwargs
class-attribute
instance-attribute
¶
Arguments to be forwarded to the model's processor for multi-modal data,
e.g., image processor. Overrides for the multi-modal processor obtained
from AutoProcessor.from_pretrained
. The available overrides depend on the
model that is being run. For example, for Phi-3-Vision: {"num_crops": 4}
.
model
class-attribute
instance-attribute
¶
model: str = 'facebook/opt-125m'
Name or path of the Hugging Face model to use. It is also used as the
content for model_name
tag in metrics output when served_model_name
is
not specified.
model_impl
class-attribute
instance-attribute
¶
Which implementation of the model to use:
-
"auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
-
"vllm" will use the vLLM model implementation.
-
"transformers" will use the Transformers model implementation.
override_attention_dtype
class-attribute
instance-attribute
¶
Override dtype for attention
override_generation_config
class-attribute
instance-attribute
¶
Overrides or sets generation config. e.g. {"temperature": 0.5}
. If
used with --generation-config auto
, the override parameters will be
merged with the default config from the model. If used with
--generation-config vllm
, only the override parameters are used.
override_neuron_config
class-attribute
instance-attribute
¶
Initialize non-default neuron config or override default neuron config
that are specific to Neuron devices, this argument will be used to
configure the neuron config that can not be gathered from the vllm
arguments. e.g. {"cast_logits_dtype": "bfloat16"}
.
override_pooler_config
class-attribute
instance-attribute
¶
override_pooler_config: Optional[
Union[dict, PoolerConfig]
] = None
Initialize non-default pooling config or override default pooling config
for the pooling model. e.g. {"pooling_type": "mean", "normalize": false}
.
pooler_config
class-attribute
instance-attribute
¶
pooler_config: Optional[PoolerConfig] = field(init=False)
Pooler config which controls the behaviour of output pooling in pooling models.
quantization
class-attribute
instance-attribute
¶
quantization: SkipValidation[
Optional[QuantizationMethods]
] = None
Method used to quantize the weights. If None
, we first check the
quantization_config
attribute in the model config file. If that is
None
, we assume the model weights are not quantized and use dtype
to
determine the data type of the weights.
revision
class-attribute
instance-attribute
¶
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
rope_scaling
class-attribute
instance-attribute
¶
RoPE scaling configuration. For example,
{"rope_type":"dynamic","factor":2.0}
.
rope_theta
class-attribute
instance-attribute
¶
RoPE theta. Use with rope_scaling
. In some cases, changing the RoPE
theta improves the performance of the scaled model.
seed
class-attribute
instance-attribute
¶
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
served_model_name
class-attribute
instance-attribute
¶
The model name(s) used in the API. If multiple names are provided, the
server will respond to any of the provided names. The model name in the
model field of a response will be the first name in this list. If not
specified, the model name will be the same as the --model
argument. Noted
that this name(s) will also be used in model_name
tag content of
prometheus metrics, if multiple names provided, metrics tag will take the
first one.
skip_tokenizer_init
class-attribute
instance-attribute
¶
skip_tokenizer_init: bool = False
Skip initialization of tokenizer and detokenizer. Expects valid
prompt_token_ids
and None
for prompt from the input. The generated
output will contain token ids.
spec_target_max_model_len
class-attribute
instance-attribute
¶
Specify the maximum length for spec decoding draft models.
task
class-attribute
instance-attribute
¶
task: Literal[TaskOption, Literal['draft']] = 'auto'
The task to use the model for. Each vLLM instance only supports one task, even if the same model can be used for multiple tasks. When the model only supports one task, "auto" can be used to select it; otherwise, you must specify explicitly which task to use.
tokenizer
class-attribute
instance-attribute
¶
tokenizer: SkipValidation[str] = None
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
tokenizer_mode
class-attribute
instance-attribute
¶
tokenizer_mode: TokenizerMode = 'auto'
Tokenizer mode:
-
"auto" will use the fast tokenizer if available.
-
"slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common
. -
"custom" will use --tokenizer to select the preregistered tokenizer.
tokenizer_revision
class-attribute
instance-attribute
¶
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
trust_remote_code
class-attribute
instance-attribute
¶
trust_remote_code: bool = False
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
use_async_output_proc
class-attribute
instance-attribute
¶
use_async_output_proc: bool = True
Whether to use async output processor.
__post_init__
¶
Source code in vllm/config.py
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
|
_get_encoder_config
¶
_get_preferred_task
¶
_get_preferred_task(
architectures: list[str],
supported_tasks: set[_ResolvedTask],
) -> Optional[_ResolvedTask]
Source code in vllm/config.py
_init_multimodal_config
¶
_init_multimodal_config() -> Optional[MultiModalConfig]
Source code in vllm/config.py
_init_pooler_config
¶
_init_pooler_config() -> Optional[PoolerConfig]
Source code in vllm/config.py
_parse_quant_hf_config
¶
Source code in vllm/config.py
_resolve_task
¶
_resolve_task(
task_option: Literal[TaskOption, Literal["draft"]],
) -> tuple[set[_ResolvedTask], _ResolvedTask]
Source code in vllm/config.py
_verify_bnb_config
¶
The current version of bitsandbytes (0.45.3) with 8-bit models does not yet support CUDA graph.
TODO Remove this when bitsandbytes supports.¶
Source code in vllm/config.py
_verify_cuda_graph
¶
Source code in vllm/config.py
_verify_quantization
¶
Source code in vllm/config.py
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
|
_verify_tokenizer_mode
¶
Source code in vllm/config.py
_verify_with_expert_parallelism
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
get_and_verify_max_len
¶
get_and_verify_max_len(max_model_len: int)
Source code in vllm/config.py
get_diff_sampling_param
¶
This method returns a dictionary containing the parameters
that differ from the default sampling parameters. If
generation_config
is "vllm"
, an empty dictionary is returned.
Returns:
Type | Description |
---|---|
dict[str, Any]
|
dict[str, Any]: A dictionary with the differing sampling |
dict[str, Any]
|
parameters, if |
Source code in vllm/config.py
get_head_size
¶
get_head_size() -> int
Source code in vllm/config.py
get_hf_config_sliding_window
¶
Get the sliding window size, or None if disabled.
Source code in vllm/config.py
get_layers_start_end_indices
¶
get_layers_start_end_indices(
parallel_config: ParallelConfig,
) -> tuple[int, int]
Source code in vllm/config.py
get_multimodal_config
¶
get_multimodal_config() -> MultiModalConfig
Get the multimodal configuration of the model.
Raises:
Type | Description |
---|---|
ValueError
|
If the model is not multimodal. |
Source code in vllm/config.py
get_num_attention_heads
¶
get_num_attention_heads(
parallel_config: ParallelConfig,
) -> int
get_num_kv_heads
¶
get_num_kv_heads(parallel_config: ParallelConfig) -> int
Returns the number of KV heads per GPU.
Source code in vllm/config.py
get_num_layers
¶
get_num_layers(parallel_config: ParallelConfig) -> int
get_num_layers_by_block_type
¶
get_num_layers_by_block_type(
parallel_config: ParallelConfig,
block_type: LayerBlockType = attention,
) -> int
Source code in vllm/config.py
get_sliding_window
¶
Get the sliding window size, or None if disabled.
Source code in vllm/config.py
get_total_num_kv_heads
¶
get_total_num_kv_heads() -> int
Returns the total number of KV heads.
Source code in vllm/config.py
maybe_pull_model_tokenizer_for_s3
¶
Pull model/tokenizer from S3 to temporary directory when needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
str
|
Model name or path |
required |
tokenizer
|
str
|
Tokenizer name or path |
required |
Source code in vllm/config.py
try_get_generation_config
¶
Source code in vllm/config.py
validate_model_config_after
¶
validate_model_config_after() -> ModelConfig
Source code in vllm/config.py
validate_quantization_before
classmethod
¶
verify_async_output_proc
¶
Source code in vllm/config.py
verify_dual_chunk_attention_config
¶
verify_dual_chunk_attention_config(
load_config: LoadConfig,
) -> None
Source code in vllm/config.py
verify_with_parallel_config
¶
verify_with_parallel_config(
parallel_config: ParallelConfig,
) -> None
Source code in vllm/config.py
ModelImpl
¶
Source code in vllm/config.py
MultiModalConfig
¶
Controls the behavior of multimodal models.
Source code in vllm/config.py
disable_mm_preprocessor_cache
class-attribute
instance-attribute
¶
disable_mm_preprocessor_cache: bool = False
If True
, disable caching of the processed multi-modal inputs.
limit_per_prompt
class-attribute
instance-attribute
¶
limit_per_prompt: dict[str, int] = cast(
dict[str, int],
get_field(ModelConfig, "limit_mm_per_prompt"),
)
The maximum number of input items allowed per prompt for each modality. Defaults to 1 (V0) or 999 (V1) for each modality.
For example, to allow up to 16 images and 2 videos per prompt:
{"images": 16, "videos": 2}
mm_processor_kwargs
class-attribute
instance-attribute
¶
Overrides for the multi-modal processor obtained from
transformers.AutoProcessor.from_pretrained
.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision:
{"num_crops": 4}
.
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
get_limit_per_prompt
¶
Get the maximum number of input items allowed per prompt for the given modality.
ObservabilityConfig
¶
Configuration for observability - metrics and tracing.
Source code in vllm/config.py
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 |
|
collect_detailed_traces
class-attribute
instance-attribute
¶
collect_detailed_traces: Optional[
list[DetailedTraceModules]
] = None
It makes sense to set this only if --otlp-traces-endpoint
is set. If
set, it will collect detailed traces for the specified modules. This
involves use of possibly costly and or blocking operations and hence might
have a performance impact.
Note that collecting detailed timing information for each request can be expensive.
collect_model_execute_time
cached
property
¶
collect_model_execute_time: bool
Whether to collect model execute time for the request.
collect_model_forward_time
cached
property
¶
collect_model_forward_time: bool
Whether to collect model forward time for the request.
otlp_traces_endpoint
class-attribute
instance-attribute
¶
Target URL to which OpenTelemetry traces will be sent.
show_hidden_metrics
cached
property
¶
show_hidden_metrics: bool
Check if the hidden metrics should be shown.
show_hidden_metrics_for_version
class-attribute
instance-attribute
¶
Enable deprecated Prometheus metrics that have been hidden since the
specified version. For example, if a previously deprecated metric has been
hidden since the v0.7.0 release, you use
--show-hidden-metrics-for-version=0.7
as a temporary escape hatch while
you migrate to new metrics. The metric is likely to be removed completely
in an upcoming release.
__post_init__
¶
Source code in vllm/config.py
_parse_collect_detailed_traces
¶
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
ParallelConfig
¶
Configuration for the distributed execution.
Source code in vllm/config.py
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 |
|
data_parallel_backend
class-attribute
instance-attribute
¶
data_parallel_backend: str = 'mp'
Backend to use for data parallel, either "mp" or "ray".
data_parallel_master_ip
class-attribute
instance-attribute
¶
data_parallel_master_ip: str = '127.0.0.1'
IP of the data parallel master.
data_parallel_master_port
class-attribute
instance-attribute
¶
data_parallel_master_port: int = 29500
Port of the data parallel master.
data_parallel_rank
class-attribute
instance-attribute
¶
data_parallel_rank: int = 0
Rank of the data parallel group.
data_parallel_rank_local
class-attribute
instance-attribute
¶
Local rank of the data parallel group, set only in SPMD mode.
data_parallel_rpc_port
class-attribute
instance-attribute
¶
data_parallel_rpc_port: int = 29550
Port for data parallel messaging.
data_parallel_size
class-attribute
instance-attribute
¶
data_parallel_size: int = 1
Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.
data_parallel_size_local
class-attribute
instance-attribute
¶
data_parallel_size_local: int = 1
Number of local data parallel groups.
disable_custom_all_reduce
class-attribute
instance-attribute
¶
disable_custom_all_reduce: bool = False
Disable the custom all-reduce kernel and fall back to NCCL.
distributed_executor_backend
class-attribute
instance-attribute
¶
distributed_executor_backend: Optional[
Union[DistributedExecutorBackend, type[ExecutorBase]]
] = None
Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu and hpu only support Ray for distributed inference.
enable_expert_parallel
class-attribute
instance-attribute
¶
enable_expert_parallel: bool = False
Use expert parallelism instead of tensor parallelism for MoE layers.
enable_multimodal_encoder_data_parallel
class-attribute
instance-attribute
¶
enable_multimodal_encoder_data_parallel: bool = False
Use data parallelism instead of tensor parallelism for vision encoder. Only support LLama4 for now
max_parallel_loading_workers
class-attribute
instance-attribute
¶
Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.
pipeline_parallel_size
class-attribute
instance-attribute
¶
pipeline_parallel_size: int = 1
Number of pipeline parallel groups.
placement_group
class-attribute
instance-attribute
¶
placement_group: Optional[PlacementGroup] = None
ray distributed model workers placement group.
ray_workers_use_nsight
class-attribute
instance-attribute
¶
ray_workers_use_nsight: bool = False
Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
sd_worker_cls
class-attribute
instance-attribute
¶
sd_worker_cls: str = 'auto'
The full name of the worker class to use for speculative decoding. If "auto", the worker class will be determined based on the platform.
tensor_parallel_size
class-attribute
instance-attribute
¶
tensor_parallel_size: int = 1
Number of tensor parallel groups.
tokenizer_pool_config
class-attribute
instance-attribute
¶
tokenizer_pool_config: Optional[TokenizerPoolConfig] = None
This parameter is deprecated and will be removed in a future release. Please remove it from your configs
worker_cls
class-attribute
instance-attribute
¶
worker_cls: str = 'auto'
The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.
worker_extension_cls
class-attribute
instance-attribute
¶
worker_extension_cls: str = ''
The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.
world_size
class-attribute
instance-attribute
¶
world_size is TPxPP, it affects the number of workers we create.
world_size_across_dp
property
¶
world_size_across_dp: int
world_size_across_dp is TPxPPxDP, it is the size of the world including data parallelism.
__post_init__
¶
Source code in vllm/config.py
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 |
|
_verify_args
¶
_verify_args() -> Self
Source code in vllm/config.py
compute_hash
¶
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
get_next_dp_init_port
¶
get_next_dp_init_port() -> int
We might need to initialize process groups in multiple processes that is related to data parallelism, e.g. both in the worker and in the engine, which can live in different processes. To avoid port conflicts, we increment the port number each time we need to initialize a new process group related to data parallelism.
Source code in vllm/config.py
has_unfinished_dp
staticmethod
¶
Source code in vllm/config.py
stateless_init_dp_group
¶
Source code in vllm/config.py
PassConfig
¶
Configuration for custom Inductor passes.
This is separate from general CompilationConfig
so that inductor passes
don't all have access to full configuration - that would create a cycle as
the PassManager
is set as a property of config.
Source code in vllm/config.py
dump_graph_dir
class-attribute
instance-attribute
¶
Directory to dump the graphs.
dump_graph_stages
class-attribute
instance-attribute
¶
List of stages for which we want to dump the graph. Each pass defines its own stages (before, after, maybe in-between).
enable_async_tp
class-attribute
instance-attribute
¶
enable_async_tp: bool = False
Whether to enable async TP.
enable_attn_fusion
class-attribute
instance-attribute
¶
enable_attn_fusion: bool = False
Whether to enable the custom attention+quant fusion pass.
enable_fusion
class-attribute
instance-attribute
¶
enable_fusion: bool = field(
default_factory=lambda: not VLLM_USE_V1
)
Whether to enable the custom fusion (RMSNorm/SiluMul+quant) pass.
enable_noop
class-attribute
instance-attribute
¶
enable_noop: bool = field(
default_factory=lambda: not VLLM_USE_V1
)
Whether to enable the custom no-op elimination pass.
enable_sequence_parallelism
class-attribute
instance-attribute
¶
enable_sequence_parallelism: bool = False
Whether to enable sequence parallelism.
__post_init__
¶
Source code in vllm/config.py
uuid
¶
Produces a hash unique to the pass configuration. Any new fields that affect compilation should be added to the hash. Do not include dump_graph_* in the hash - they don't affect compilation.
Source code in vllm/config.py
PoolerConfig
¶
Controls the behavior of output pooling in pooling models.
Source code in vllm/config.py
normalize
class-attribute
instance-attribute
¶
Whether to normalize the pooled outputs. Usually, this should be set to
True
for embedding outputs.
pooling_type
class-attribute
instance-attribute
¶
The pooling method of the pooling model. This should be a key in
vllm.model_executor.layers.pooler.PoolingType
.
returned_token_ids
class-attribute
instance-attribute
¶
A list of indices for the vocabulary dimensions to be extracted,
such as the token IDs of good_token
and bad_token
in the
math-shepherd-mistral-7b-prm
model.
softmax
class-attribute
instance-attribute
¶
Whether to apply softmax to the pooled outputs. Usually, this should be set
to True
for classification outputs.
step_tag_id
class-attribute
instance-attribute
¶
If set, only the score corresponding to the step_tag_id
in the
generated sentence should be returned. Otherwise, the scores for all tokens
are returned.
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
PromptAdapterConfig
¶
Configuration for PromptAdapters.
Source code in vllm/config.py
max_cpu_prompt_adapters
class-attribute
instance-attribute
¶
Maximum number of PromptAdapters to store in CPU memory. Must be >= than
max_prompt_adapters
.
max_prompt_adapter_token
class-attribute
instance-attribute
¶
max_prompt_adapter_token: int = 0
Max number of PromptAdapters tokens.
max_prompt_adapters
class-attribute
instance-attribute
¶
max_prompt_adapters: int = 1
Max number of PromptAdapters in a batch.
prompt_adapter_dtype
class-attribute
instance-attribute
¶
Data type for PromptAdapter. If auto, will default to base model dtype.
__post_init__
¶
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
verify_with_model_config
¶
verify_with_model_config(model_config: ModelConfig)
Source code in vllm/config.py
SchedulerConfig
¶
Scheduler configuration.
Source code in vllm/config.py
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 |
|
chunked_prefill_enabled
class-attribute
instance-attribute
¶
True if chunked prefill is enabled.
cuda_graph_sizes
class-attribute
instance-attribute
¶
Cuda graph capture sizes, default is 512. 1. if one value is provided, then the capture list would follow the pattern: [1, 2, 4] + [i for i in range(8, cuda_graph_sizes + 1, 8)] 2. more than one value (e.g. 1 2 128) is provided, then the capture list will follow the provided list.
delay_factor
class-attribute
instance-attribute
¶
delay_factor: float = 0.0
Apply a delay (of delay factor multiplied by previous prompt latency) before scheduling next prompt.
disable_chunked_mm_input
class-attribute
instance-attribute
¶
disable_chunked_mm_input: bool = False
If set to true and chunked prefill is enabled, we do not want to partially schedule a multimodal item. Only used in V1 This ensures that if a request has a mixed prompt (like text tokens TTTT followed by image tokens IIIIIIIIII) where only some image tokens can be scheduled (like TTTTIIIII, leaving IIIII), it will be scheduled as TTTT in one step and IIIIIIIIII in the next.
disable_hybrid_kv_cache_manager
class-attribute
instance-attribute
¶
disable_hybrid_kv_cache_manager: bool = False
If set to True, KV cache manager will allocate the same size of KV cache for all attention layers even if there are multiple type of attention layers like full attention and sliding window attention.
enable_chunked_prefill
class-attribute
instance-attribute
¶
enable_chunked_prefill: SkipValidation[bool] = None
If True, prefill requests can be chunked based on the remaining max_num_batched_tokens.
encoder_cache_size
class-attribute
instance-attribute
¶
Multimodal encoder cache size, only used in V1.
NOTE: This is not currently configurable. It will be overridden by max_num_batched_tokens in case max multimodal embedding size is larger.
is_multimodal_model
class-attribute
instance-attribute
¶
is_multimodal_model: bool = False
True if the model is multimodal.
long_prefill_token_threshold
class-attribute
instance-attribute
¶
long_prefill_token_threshold: int = 0
For chunked prefill, a request is considered long if the prompt is longer than this number of tokens.
max_long_partial_prefills
class-attribute
instance-attribute
¶
max_long_partial_prefills: int = 1
For chunked prefill, the maximum number of prompts longer than long_prefill_token_threshold that will be prefilled concurrently. Setting this less than max_num_partial_prefills will allow shorter prompts to jump the queue in front of longer prompts in some cases, improving latency.
max_model_len
class-attribute
instance-attribute
¶
max_model_len: SkipValidation[int] = None
Maximum length of a sequence (including prompt and generated text). This
is primarily set in ModelConfig
and that value should be manually
duplicated here.
max_num_batched_tokens
class-attribute
instance-attribute
¶
max_num_batched_tokens: SkipValidation[int] = None
Maximum number of tokens to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will
be set in EngineArgs.create_engine_config
based on the usage context.
max_num_encoder_input_tokens
class-attribute
instance-attribute
¶
Multimodal encoder compute budget, only used in V1.
NOTE: This is not currently configurable. It will be overridden by max_num_batched_tokens in case max multimodal embedding size is larger.
max_num_partial_prefills
class-attribute
instance-attribute
¶
max_num_partial_prefills: int = 1
For chunked prefill, the maximum number of sequences that can be partially prefilled concurrently.
max_num_seqs
class-attribute
instance-attribute
¶
max_num_seqs: SkipValidation[int] = None
Maximum number of sequences to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will
be set in EngineArgs.create_engine_config
based on the usage context.
multi_step_stream_outputs
class-attribute
instance-attribute
¶
multi_step_stream_outputs: bool = True
If False, then multi-step will stream outputs at the end of all steps
num_lookahead_slots
class-attribute
instance-attribute
¶
num_lookahead_slots: int = 0
The number of slots to allocate per sequence per step, beyond the known token ids. This is used in speculative decoding to store KV activations of tokens which may or may not be accepted.
NOTE: This will be replaced by speculative config in the future; it is present to enable correctness tests until then.
num_scheduler_steps
class-attribute
instance-attribute
¶
num_scheduler_steps: int = 1
Maximum number of forward steps per scheduler call.
policy
class-attribute
instance-attribute
¶
policy: SchedulerPolicy = 'fcfs'
The scheduling policy to use:
-
"fcfs" means first come first served, i.e. requests are handled in order of arrival.
-
"priority" means requests are handled based on given priority (lower value means earlier handling) and time of arrival deciding any ties).
preemption_mode
class-attribute
instance-attribute
¶
preemption_mode: Optional[PreemptionMode] = None
Whether to perform preemption by swapping or recomputation. If not specified, we determine the mode as follows: We use recomputation by default since it incurs lower overhead than swapping. However, when the sequence group has multiple sequences (e.g., beam search), recomputation is not currently supported. In such a case, we use swapping instead.
runner_type
class-attribute
instance-attribute
¶
runner_type: RunnerType = 'generate'
The runner type to launch for the model.
scheduler_cls
class-attribute
instance-attribute
¶
The scheduler class to use. "vllm.core.scheduler.Scheduler" is the default scheduler. Can be a class directly or the path to a class of form "mod.custom_class".
send_delta_data
class-attribute
instance-attribute
¶
send_delta_data: bool = False
Private API. If used, scheduler sends delta data to workers instead of an entire data. It should be enabled only when SPMD worker architecture is enabled. I.e., VLLM_USE_RAY_SPMD_WORKER=1
__post_init__
¶
Source code in vllm/config.py
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 |
|
_verify_args
¶
_verify_args() -> Self
Source code in vllm/config.py
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 |
|
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
SpeculativeConfig
¶
Configuration for speculative decoding.
Source code in vllm/config.py
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 |
|
acceptance_method
class-attribute
instance-attribute
¶
acceptance_method: SpeculativeAcceptanceMethod = (
"rejection_sampler"
)
The method to use for accepting draft tokens:
-
"rejection_sampler" maps to
RejectionSampler
. -
"typical_acceptance_sampler" maps to
TypicalAcceptanceSampler
.
If using typical_acceptance_sampler
, the related configuration
posterior_threshold
and posterior_alpha
should be considered.
code_revision
class-attribute
instance-attribute
¶
The specific revision to use for the draft model code on Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
disable_by_batch_size
class-attribute
instance-attribute
¶
Disable speculative decoding for new incoming requests when the number of enqueued requests is larger than this value, if provided.
disable_log_stats
class-attribute
instance-attribute
¶
disable_log_stats: SkipValidation[bool] = None
Whether to disable the periodic printing of stage times in speculative decoding.
disable_logprobs
class-attribute
instance-attribute
¶
disable_logprobs: bool = True
If set to True, token log probabilities are not returned during speculative decoding. If set to False, token log probabilities are returned according to the log probability settings in SamplingParams.
disable_mqa_scorer
class-attribute
instance-attribute
¶
disable_mqa_scorer: bool = False
Disable the MQA scorer and fall back to batch expansion for scoring proposals.
draft_model_config
class-attribute
instance-attribute
¶
draft_model_config: SkipValidation[ModelConfig] = None
The configuration of the draft model initialized internal.
draft_parallel_config
class-attribute
instance-attribute
¶
draft_parallel_config: SkipValidation[ParallelConfig] = None
The parallel configuration for the draft model initialized internal.
draft_tensor_parallel_size
class-attribute
instance-attribute
¶
The degree of the tensor parallelism for the draft model. Can only be 1 or the same as the target model's tensor parallel size.
enable_chunked_prefill
class-attribute
instance-attribute
¶
enable_chunked_prefill: SkipValidation[bool] = None
Whether vLLM is configured to use chunked prefill or not. Used for raising an error since it's not yet compatible with speculative decode.
max_model_len
class-attribute
instance-attribute
¶
The maximum model length of the draft model. Used when testing the ability to skip speculation for some sequences.
method
class-attribute
instance-attribute
¶
method: Optional[SpeculativeMethod] = None
The name of the speculative method to use. If users provide and set the
model
param, the speculative method type will be detected automatically
if possible, if model
param is not provided, the method name must be
provided.
If using ngram
method, the related configuration prompt_lookup_max
and
prompt_lookup_min
should be considered.
model
class-attribute
instance-attribute
¶
The name of the draft model, eagle head, or additional weights, if provided.
num_lookahead_slots
property
¶
num_lookahead_slots: int
The number of additional slots the scheduler should allocate per step, in addition to the slots allocated for each known token.
This is equal to the number of speculative tokens, as each speculative token must be scored.
num_speculative_tokens
class-attribute
instance-attribute
¶
num_speculative_tokens: SkipValidation[int] = None
The number of speculative tokens, if provided. It will default to the number in the draft model config if present, otherwise, it is required.
posterior_alpha
class-attribute
instance-attribute
¶
Scaling factor for entropy-based threshold, applied when using
TypicalAcceptanceSampler
.
posterior_threshold
class-attribute
instance-attribute
¶
A threshold value that sets a lower bound on the posterior probability
of a token in the target model for it to be accepted. This threshold is
used only when we use the TypicalAcceptanceSampler
for token acceptance.
prompt_lookup_max
class-attribute
instance-attribute
¶
Maximum size of ngram token window when using Ngram proposer, required when method is set to ngram.
prompt_lookup_min
class-attribute
instance-attribute
¶
Minimum size of ngram token window when using Ngram proposer, if provided. Defaults to 1.
quantization
class-attribute
instance-attribute
¶
quantization: Optional[QuantizationMethods] = None
Quantization method that was used to quantize the draft model weights.
If None
, we assume the model weights are not quantized. Note that it only
takes effect when using the draft model-based speculative method.
revision
class-attribute
instance-attribute
¶
The specific model version to use for the draft model. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
speculative_token_tree
class-attribute
instance-attribute
¶
Specifies the tree structure for speculative token generation.
target_model_config
class-attribute
instance-attribute
¶
target_model_config: SkipValidation[ModelConfig] = None
The configuration of the target model.
target_parallel_config
class-attribute
instance-attribute
¶
target_parallel_config: SkipValidation[ParallelConfig] = (
None
)
The parallel configuration for the target model.
__post_init__
¶
Source code in vllm/config.py
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 |
|
_maybe_override_draft_max_model_len
staticmethod
¶
_maybe_override_draft_max_model_len(
speculative_max_model_len: Optional[int],
draft_max_model_len: int,
target_max_model_len: int,
) -> int
Determine the max sequence len for the draft model. This is usually the draft_max_model_len, but may be the target_max_model_len if it is less than the draft_max_model_len, or may be speculative_max_model_len if it is specified.
This is necessary so that sequences do not exceed the capacity of the draft model or the target model.
speculative_max_model_len is mainly used for testing that sequences can skip speculation.
Source code in vllm/config.py
_verify_and_get_draft_tp
staticmethod
¶
_verify_and_get_draft_tp(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: Optional[int],
draft_hf_config: PretrainedConfig,
) -> int
Verifies and adjusts the tensor parallel size for a draft model specified using speculative_draft_tensor_parallel_size.
Source code in vllm/config.py
_verify_args
¶
_verify_args() -> Self
Source code in vllm/config.py
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
create_draft_parallel_config
staticmethod
¶
create_draft_parallel_config(
target_parallel_config: ParallelConfig,
speculative_draft_tensor_parallel_size: int,
) -> ParallelConfig
Create a parallel config for use by the draft worker.
This is mostly a copy of the target parallel config, except the tp_size.
Source code in vllm/config.py
from_dict
classmethod
¶
from_dict(dict_value: dict) -> SpeculativeConfig
hf_config_override
staticmethod
¶
Source code in vllm/config.py
SupportsHash
¶
SupportsMetricsInfo
¶
TokenizerPoolConfig
¶
This config is deprecated and will be removed in a future release.
Passing these parameters will have no effect. Please remove them from your configurations.
Source code in vllm/config.py
extra_config
class-attribute
instance-attribute
¶
This parameter is deprecated and will be removed in a future release. Passing this parameter will have no effect. Please remove it from your configurations.
pool_size
class-attribute
instance-attribute
¶
pool_size: int = 0
This parameter is deprecated and will be removed in a future release. Passing this parameter will have no effect. Please remove it from your configurations.
pool_type
class-attribute
instance-attribute
¶
pool_type: str = 'ray'
This parameter is deprecated and will be removed in a future release. Passing this parameter will have no effect. Please remove it from your configurations.
__post_init__
¶
VllmConfig
¶
Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.
Source code in vllm/config.py
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 |
|
additional_config
class-attribute
instance-attribute
¶
additional_config: Union[dict, SupportsHash] = field(
default_factory=dict
)
Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.
cache_config
class-attribute
instance-attribute
¶
cache_config: CacheConfig = field(
default_factory=CacheConfig
)
Cache configuration.
compilation_config
class-attribute
instance-attribute
¶
compilation_config: CompilationConfig = field(
default_factory=CompilationConfig
)
torch.compile
configuration for the model.
When it is a number (0, 1, 2, 3), it will be interpreted as the optimization level.
NOTE: level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production.
Following the convention of traditional compilers, using -O
without space
is also supported. -O3
is equivalent to -O 3
.
You can specify the full compilation config like so:
{"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}
decoding_config
class-attribute
instance-attribute
¶
decoding_config: DecodingConfig = field(
default_factory=DecodingConfig
)
Decoding configuration.
device_config
class-attribute
instance-attribute
¶
device_config: DeviceConfig = field(
default_factory=DeviceConfig
)
Device configuration.
kv_events_config
class-attribute
instance-attribute
¶
kv_events_config: Optional[KVEventsConfig] = None
The configurations for event publishing.
kv_transfer_config
class-attribute
instance-attribute
¶
kv_transfer_config: Optional[KVTransferConfig] = None
The configurations for distributed KV cache transfer.
load_config
class-attribute
instance-attribute
¶
load_config: LoadConfig = field(default_factory=LoadConfig)
Load configuration.
lora_config
class-attribute
instance-attribute
¶
lora_config: Optional[LoRAConfig] = None
LoRA configuration.
model_config
class-attribute
instance-attribute
¶
model_config: ModelConfig = None
Model configuration.
observability_config
class-attribute
instance-attribute
¶
observability_config: Optional[ObservabilityConfig] = None
Observability configuration.
parallel_config
class-attribute
instance-attribute
¶
parallel_config: ParallelConfig = field(
default_factory=ParallelConfig
)
Parallel configuration.
prompt_adapter_config
class-attribute
instance-attribute
¶
prompt_adapter_config: Optional[PromptAdapterConfig] = None
Prompt adapter configuration.
quant_config
class-attribute
instance-attribute
¶
quant_config: Optional[QuantizationConfig] = None
Quantization configuration.
scheduler_config
class-attribute
instance-attribute
¶
scheduler_config: SchedulerConfig = field(
default_factory=SchedulerConfig
)
Scheduler configuration.
speculative_config
class-attribute
instance-attribute
¶
speculative_config: Optional[SpeculativeConfig] = None
Speculative decoding configuration.
__post_init__
¶
Verify configs are valid & consistent with each other.
Source code in vllm/config.py
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 |
|
__str__
¶
Source code in vllm/config.py
_get_quantization_config
staticmethod
¶
_get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Get the quantization config.
Source code in vllm/config.py
_set_cudagraph_sizes
¶
cudagraph batchsize padding logic:
[1, 2, 4] + [8 * i for i in range(1, 1025)]
is a list of all possible
batch sizes that cudagraph will capture.
Depending on the engine's configuration of max_num_seqs
, the
candidate batch sizes to capture cudagraph will shrink to the subset
which just cover the range of [1, max_num_seqs]
. In the common case,
max_num_seqs
is 256, and the cudagraph batch sizes will be
[1, 2, 4, 8, 16, 24, 32, 40, ..., 256]
.
However, if users specify the cudagraph capture sizes through compilation config, we will use the specified sizes instead.
In the end, vllm_config.compilation_config.cudagraph_capture_sizes
will be the final sizes to capture cudagraph (in descending order).
During runtime, if batchsize is larger than
vllm_config.compilation_config.cudagraph_capture_sizes
,
no cudagraph will be used.
If the batch size is no larger than
vllm_config.compilation_config.cudagraph_capture_sizes
,
we can quickly find the padded graph size for a given batch size by
looking up vllm_config.compilation_config.bs_to_padded_graph_size
.
Source code in vllm/config.py
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 |
|
compute_hash
¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config.py
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 |
|
get_quantization_config
staticmethod
¶
get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Source code in vllm/config.py
pad_for_cudagraph
¶
Source code in vllm/config.py
recalculate_max_model_len
¶
recalculate_max_model_len(max_model_len: int)
Source code in vllm/config.py
update_sizes_for_sequence_parallelism
¶
Source code in vllm/config.py
with_hf_config
¶
with_hf_config(
hf_config: PretrainedConfig,
architectures: Optional[list[str]] = None,
) -> VllmConfig
Source code in vllm/config.py
_check_valid_dtype
¶
Source code in vllm/config.py
_find_dtype
¶
Source code in vllm/config.py
_get_and_verify_dtype
¶
_get_and_verify_dtype(
model_id: str,
config: PretrainedConfig,
dtype: Union[str, dtype],
*,
is_pooling_model: bool,
revision: Optional[str] = None,
) -> dtype
Source code in vllm/config.py
_get_and_verify_max_len
¶
_get_and_verify_max_len(
hf_config: PretrainedConfig,
tokenizer_config: Optional[dict],
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window_len: Optional[
Union[int, list[Optional[int]]]
],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int
Get and verify the model's maximum length.
Source code in vllm/config.py
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 |
|
_is_valid_dtype
¶
_resolve_auto_dtype
¶
Source code in vllm/config.py
assert_hashable
¶
Source code in vllm/config.py
config
¶
A decorator that ensures all fields in a dataclass have default values and that each field has a docstring.
If a ConfigT
is used as a CLI argument itself, the default value provided
by get_kwargs
will be the result parsing a JSON string as the kwargs
(i.e. ConfigT(**json.loads(cli_arg))
). However, if a particular ConfigT
requires custom construction from CLI (i.e. CompilationConfig
), it can
have a from_cli
method, which will be called instead.
Source code in vllm/config.py
contains_object_print
¶
Check if the text looks like a printed Python object, e.g. contains any substring matching the pattern: "at 0xFFFFFFF>" We match against 0x followed by 2-16 hex chars (there's a max of 16 on a 64 bit system).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The text to check |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
bool
|
|
Source code in vllm/config.py
get_attr_docs
¶
Get any docstrings placed after attribute assignments in a class body.
https://davidism.com/mit-license/
Source code in vllm/config.py
get_current_model_prefix
¶
get_current_model_prefix() -> str
Get the prefix of the model that's currently being initialized.
get_current_vllm_config
¶
get_current_vllm_config() -> VllmConfig
Source code in vllm/config.py
get_field
¶
get_field(cls: ConfigType, name: str) -> Field
Get the default factory field of a dataclass by name. Used for getting
default factory fields in EngineArgs
.
Source code in vllm/config.py
get_layers_from_vllm_config
¶
Source code in vllm/config.py
get_min_sliding_window
¶
get_served_model_name
¶
If the input is a non-empty list, the first model_name in
served_model_name
is taken.
If the input is a non-empty string, it is used directly.
For cases where the input is either an empty string or an
empty list, the fallback is to use self.model
.
Source code in vllm/config.py
is_init_field
¶
is_init_field(cls: ConfigType, name: str) -> bool
set_current_vllm_config
¶
set_current_vllm_config(
vllm_config: VllmConfig,
check_compile=False,
prefix: Optional[str] = None,
)
Temporarily set the current vLLM config. Used during model initialization. We save the current vLLM config in a global variable, so that all modules can access it, e.g. custom ops can access the vLLM config to determine how to dispatch.