Multi-Modal Support#

This document walks you through the steps to extend a basic model so that it accepts multi-modal inputs.

1. Update the base vLLM model#

It is assumed that you have already implemented the model in vLLM according to these steps. Further update the model as follows:

  • Reserve a keyword parameter in forward() for each input tensor that corresponds to a multi-modal input, as shown in the following example:

      def forward(
          self,
          input_ids: torch.Tensor,
          positions: torch.Tensor,
    +     pixel_values: torch.Tensor,
      ) -> SamplerOutput:
    

    More conveniently, you can simply pass **kwargs to the forward() method and retrieve the keyword parameters for multimodal inputs from it.

  • Implement get_multimodal_embeddings() that returns the embeddings from running the multimodal inputs through the multimodal tokenizer of the model. Below we provide a boilerplate of a typical implementation pattern, but feel free to adjust it to your own needs.

    class YourModelForImage2Seq(nn.Module):
        ...
    
        def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor:
    
            assert self.vision_encoder is not None
            image_features = self.vision_encoder(image_input)
            return self.multi_modal_projector(image_features)
    
        def get_multimodal_embeddings(
                self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
    
            # Validate the multimodal input keyword arguments
            image_input = self._parse_and_validate_image_input(**kwargs)
            if image_input is None:
                return None
    
            # Run multimodal inputs through encoder and projector
            vision_embeddings = self._process_image_input(image_input)
            return vision_embeddings
    

    Important

    The returned multimodal_embeddings must be either a 3D torch.Tensor of shape (num_items, feature_size, hidden_size), or a list / tuple of 2D torch.Tensor’s of shape (feature_size, hidden_size), so that multimodal_embeddings[i] retrieves the embeddings generated from the i-th multimodal data item (e.g, image) of the request.

  • Implement get_input_embeddings() to merge multimodal_embeddings with text embeddings from the input_ids. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.

    from .utils import merge_multimodal_embeddings
    
    class YourModelForImage2Seq(nn.Module):
        ...
    
        def get_input_embeddings(
            self,
            input_ids: torch.Tensor,
            multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
        ) -> torch.Tensor:
    
            # `get_input_embeddings` should already be implemented for the language 
            # model as one of the requirements of basic vLLM model implementation.
            inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    
            if multimodal_embeddings is not None:
                inputs_embeds = merge_multimodal_embeddings(
                    input_ids=input_ids, 
                    inputs_embeds=inputs_embeds, 
                    multimodal_embeddings=multimodal_embeddings,
                    placeholder_token_id=self.config.image_token_index)
    
            return inputs_embeds
    
  • Implement get_language_model() getter to provide stable access to the underlying language model.

    class YourModelForImage2Seq(nn.Module):
        ...
    
        def get_language_model(self) -> torch.nn.Module:
            # Change `language_model` according to your implementation.
            return self.language_model
    
  • Once the above steps are done, update the model class with the SupportsMultiModal interface.

    + from vllm.model_executor.models.interfaces import SupportsMultiModal
    
    - class YourModelForImage2Seq(nn.Module):
    + class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
    

    Note

    The model class does not have to be named *ForCausalLM. Check out the HuggingFace Transformers documentation for some examples.

2. Specify processing information#

Next, create a subclass of BaseProcessingInfo to provide basic information related to HF processing.

Maximum number of input items#

You need to override the abstract method get_supported_mm_limits() to return the maximum number of input items for each modality supported by the model.

For example, if the model supports any number of images but only one video per prompt:

def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None, "video": 1}

3. Specify dummy inputs#

Then, inherit BaseDummyInputsBuilder to construct dummy inputs for HF processing as well as memory profiling.

For memory profiling#

Override the abstract method get_dummy_processor_inputs() to construct dummy inputs for memory profiling. This dummy input should result in the worst-case memory usage of the model so that vLLM can reserve the correct amount of memory for it.

Assuming that the memory usage increases with the number of tokens, the dummy input can be constructed to maximize the number of output embeddings, which is the same number as placeholder feature tokens.

Looking at the code of HF’s LlavaForConditionalGeneration:

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]

if n_image_tokens != n_image_features:
    raise ValueError(
        f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
    )
special_image_mask = (
    (input_ids == self.config.image_token_index)
    .unsqueeze(-1)
    .expand_as(inputs_embeds)
    .to(inputs_embeds.device)
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

The number of placeholder feature tokens per image is image_features.shape[1]. image_features is calculated inside the get_image_features method:

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)

selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
    selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
    selected_image_feature = selected_image_feature
else:
    raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
image_features = self.multi_modal_projector(selected_image_feature)
return image_features

We can infer that image_features.shape[1] is based on image_outputs.hidden_states.shape[1] from the vision tower (CLIPVisionModel for the llava-hf/llava-1.5-7b-hf model). Moreover, we only need the sequence length (the second dimension of the tensor) to get image_features.shape[1]. The sequence length is determined by the initial hidden states in CLIPVisionTransformer since the attention mechanism doesn’t change the sequence length of the output hidden states.

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)

encoder_outputs = self.encoder(
    inputs_embeds=hidden_states,
    output_attentions=output_attentions,
    output_hidden_states=output_hidden_states,
    return_dict=return_dict,
)

To find the sequence length, we turn to the code of CLIPVisionEmbeddings:

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))  # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
    embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
    embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings

We can infer that embeddings.shape[1] == self.num_positions, where

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1

Overall, the number of placeholder feature tokens for an image can be calculated as:

def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    hf_config = self.get_hf_config()
    hf_processor = self.get_hf_processor()

    image_size = hf_config.vision_config.image_size
    patch_size = hf_config.vision_config.patch_size

    num_image_tokens = (image_size // patch_size) ** 2 + 1
    if hf_processor.vision_feature_select_strategy == "default":
        num_image_tokens -= 1

    return num_image_tokens

Notice that the number of image tokens doesn’t depend on the image width and height. We can simply use a dummy image_size:

def get_image_size_with_most_features(self) -> ImageSize:
    hf_config = self.get_hf_config()
    width = height = hf_config.image_size
    return ImageSize(width=width, height=height)

def get_dummy_processor_inputs(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> ProcessorInputs:
    num_images = mm_counts.get("image", 0)

    processor = self.info.get_hf_processor()
    image_token = processor.image_token
  
    hf_config = self.get_hf_config()
    target_width, target_height = self.info.get_image_size_with_most_features()

    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                               height=target_height,
                               num_images=num_images)
    }

    return ProcessorInputs(
        prompt_text=image_token * num_images,
        mm_data=mm_data,
    )

Looking at the code of HF’s FuyuForCausalLM:

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
if image_patches is not None and past_key_values is None:
    patch_embeddings = [
        self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
        .squeeze(0)
        .to(inputs_embeds.device)
        for patch in image_patches
    ]
    inputs_embeds = self.gather_continuous_embeddings(
        word_embeddings=inputs_embeds,
        continuous_embeddings=patch_embeddings,
        image_patch_input_indices=image_patches_indices,
    )

The number of placeholder feature tokens for the ith item in the batch is patch_embeddings[i].shape[0], which is the same as image_patches[i].shape[0], i.e. num_total_patches.

Unlike LLaVA, Fuyu does not define the number of patches inside the modeling file. Where can we get more information? Considering that the model input comes from the output of FuyuProcessor, let’s look at the preprocessing files.

The image outputs are obtained by calling FuyuImageProcessor.preprocess and then FuyuImageProcessor.preprocess_with_tokenizer_info inside FuyuProcessor.

In FuyuImageProcessor.preprocess, the images are resized and padded to the target FuyuImageProcessor.size, returning the dimensions after resizing (but before padding) as metadata.

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
if do_resize:
    batch_images = [
        [self.resize(image, size=size, input_data_format=input_data_format) for image in images]
        for images in batch_images
    ]

image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]

if do_pad:
    batch_images = [
        [
            self.pad_image(
                image,
                size=size,
                mode=padding_mode,
                constant_values=padding_value,
                input_data_format=input_data_format,
            )
            for image in images
        ]
        for images in batch_images
    ]

In FuyuImageProcessor.preprocess_with_tokenizer_info, the images are split into patches based on this metadata:

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
    image_input=tensor_batch_images,
    image_present=image_present,
    image_unpadded_h=image_unpadded_heights,
    image_unpadded_w=image_unpadded_widths,
    image_placeholder_id=image_placeholder_id,
    image_newline_id=image_newline_id,
    variable_sized=True,
)

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized:  # variable_sized=True
    new_h = min(
        image_height,
        math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
    )
    new_w = min(
        image_width,
        math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
    )
    image = image[:, :new_h, :new_w]
    image_height, image_width = new_h, new_w

num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
    [num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]

The number of patches is in turn defined by FuyuImageProcessor.get_num_patches:

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]

if image_height % patch_height != 0:
    raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
    raise ValueError(f"{image_width=} must be divisible by {patch_width}")

num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w

These image patches correspond to placeholder tokens (|SPEAKER|). So, we just need to maximize the number of image patches. Since input images are first resized to fit within image_processor.size, we can maximize the number of image patches by inputting an image with size equal to image_processor.size.

def get_image_size_with_most_features(self) -> ImageSize:
    image_processor = self.get_image_processor()
    return ImageSize(width=image_processor.size["width"],
                        height=image_processor.size["height"])

Fuyu does not expect image placeholders in the inputs to HF processor, so the dummy prompt text is empty regardless of the number of images. Otherwise, the logic of this method is very similar to LLaVA:

def get_dummy_processor_inputs(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> ProcessorInputs:
    target_width, target_height = \
        self.info.get_image_size_with_most_features()
    num_images = mm_counts.get("image", 0)

    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                                height=target_height,
                                num_images=num_images)
    }

    return ProcessorInputs(
        prompt_text="",
        mm_data=mm_data,
    )

4. Specify processing details#

Afterwards, create a subclass of BaseMultiModalProcessor to fill in the missing details about HF processing.

Multi-modal fields#

Override _get_mm_fields_config() to return a schema of the tensors outputted by the HF processor that are related to the input multi-modal items.

The output of CLIPImageProcessor is a simple tensor with shape (num_images, num_channels, image_height, image_width):

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
images = [
    to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
    for image in all_images
]

data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)

So, we override _get_mm_fields_config() as follows:

def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
    )

Note

Our actual code additionally supports pre-computed image embeddings, which can be passed to be model via the image_embeds argument.

The image_patches output of FuyuImageProcessor.preprocess_with_tokenizer_info concatenates the patches from each image belonging to an item in the batch:

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L673-L679
        image_input_ids.append(tensor_of_image_ids)
        image_patches.append(patches)
    else:
        image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))

batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)

The shape of image_patches outputted by FuyuImageProcessor is therefore (1, num_images, num_patches, patch_width * patch_height * num_channels).

In order to support the use of MultiModalFieldConfig.batched() like in LLaVA, we remove the extra batch dimension by overriding BaseMultiModalProcessor._call_hf_processor():

def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
) -> BatchFeature:
    processed_outputs = super()._call_hf_processor(
        prompt=prompt,
        mm_data=mm_data,
        mm_kwargs=mm_kwargs,
    )

    image_patches = processed_outputs.get("image_patches")
    if image_patches is not None:
        images = mm_data["images"]
        assert isinstance(images, list)

        # Original output: (1, num_images, Pn, Px * Py * C)
        # New output: (num_images, Pn, Px * Py * C)
        assert (isinstance(image_patches, list)
                and len(image_patches) == 1)
        assert (isinstance(image_patches[0], torch.Tensor)
                and len(image_patches[0]) == len(images))

        processed_outputs["image_patches"] = image_patches[0]

    return processed_outputs

Note

Our actual code has special handling for text-only inputs to prevent unnecessary warnings from HF processor.

This lets us override _get_mm_fields_config() as follows:

def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(image_patches=MultiModalFieldConfig.batched("image"))

Prompt updates#

Override _get_prompt_updates() to return a list of PromptUpdate instances.

Each PromptUpdate instance specifies an update operation (e.g.: insertion, replacement) performed by the HF processor.

Looking at HF’s LlavaProcessor:

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
prompt_strings = []
for sample in text:
    sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
    prompt_strings.append(sample)

It simply repeats each input image_token a number of times equal to the number of placeholder feature tokens (num_image_tokens). Based on this, we override _get_prompt_updates() as follows:

def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    image_token_id = hf_config.image_token_index

    def get_replacement(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)

        image_size = images.get_image_size(item_idx)
        num_image_tokens = self.info.get_num_image_tokens(
            image_width=image_size.width,
            image_height=image_size.height,
        )

        return [image_token_id] * num_image_tokens

    return [
        PromptReplacement(
            modality="image",
            target=[image_token_id],
            replacement=get_replacement,
        ),
    ]

Recall the layout of feature tokens from Step 2:

|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
...
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|

We define a helper function to return ncols and nrows directly:

def get_image_feature_grid_size(
    self,
    *,
    image_width: int,
    image_height: int,
) -> tuple[int, int]:
    image_processor = self.get_image_processor()
    target_width = image_processor.size["width"]
    target_height = image_processor.size["height"]
    patch_width = image_processor.patch_size["width"]
    patch_height = image_processor.patch_size["height"]

    if not (image_width <= target_width and image_height <= target_height):
        height_scale_factor = target_height / image_height
        width_scale_factor = target_width / image_width
        optimal_scale_factor = min(height_scale_factor, width_scale_factor)

        image_height = int(image_height * optimal_scale_factor)
        image_width = int(image_width * optimal_scale_factor)

    ncols = math.ceil(image_width / patch_width)
    nrows = math.ceil(image_height / patch_height)
    return ncols, nrows

Based on this, we can initially define our replacement tokens as:

def get_replacement(item_idx: int):
    images = mm_items.get_items("image", ImageProcessorItems)
    image_size = images.get_image_size(item_idx)

    ncols, nrows = self.info.get_image_feature_grid_size(
        image_width=image_size.width,
        image_height=image_size.height,
    )

    # `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
    # `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
    return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows

However, this is not entirely correct. After FuyuImageProcessor.preprocess_with_tokenizer_info is called, a BOS token (<s>) is also added to the promopt:

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
    image_input=tensor_batch_images,
    image_present=image_present,
    image_unpadded_h=image_unpadded_heights,
    image_unpadded_w=image_unpadded_widths,
    image_placeholder_id=image_placeholder_id,
    image_newline_id=image_newline_id,
    variable_sized=True,
)
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
    tokenizer=self.tokenizer,
    prompts=prompts,
    scale_factors=scale_factors,
    max_tokens_to_generate=self.max_tokens_to_generate,
    max_position_embeddings=self.max_position_embeddings,
    add_BOS=True,
    add_beginning_of_answer_token=True,
)

To assign the vision embeddings to only the image tokens, instead of a string you can return an instance of PromptUpdateDetails:

hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id  # `<s>`
assert isinstance(bos_token_id, int)

def get_replacement_fuyu(item_idx: int):
    images = mm_items.get_items("image", ImageProcessorItems)
    image_size = images.get_image_size(item_idx)

    ncols, nrows = self.info.get_image_feature_grid_size(
        image_width=image_size.width,
        image_height=image_size.height,
    )
    image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
                    [_NEWLINE_TOKEN_ID]) * nrows

    return PromptUpdateDetails.select_token_id(
        image_tokens + [bos_token_id],
        embed_token_id=_IMAGE_TOKEN_ID,
    )

Finally, noticing that the HF processor removes the |ENDOFTEXT| token from the tokenized prompt, we can search for it to conduct the replacement at the start of the string:

def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    bos_token_id = hf_config.bos_token_id
    assert isinstance(bos_token_id, int)

    tokenizer = self.info.get_tokenizer()
    eot_token_id = tokenizer.bos_token_id
    assert isinstance(eot_token_id, int)

    def get_replacement_fuyu(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)
        image_size = images.get_image_size(item_idx)

        ncols, nrows = self.info.get_image_feature_grid_size(
            image_width=image_size.width,
            image_height=image_size.height,
        )
        image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
                        [_NEWLINE_TOKEN_ID]) * nrows

        return PromptUpdateDetails.select_token_id(
            image_tokens + [bos_token_id],
            embed_token_id=_IMAGE_TOKEN_ID,
        )

    return [
        PromptReplacement(
            modality="image",
            target=[eot_token_id],
            replacement=get_replacement_fuyu,
        )
    ]

Notes#

Inserting feature tokens without replacement#

Some HF processors directly insert feature tokens without replacing anything in the original prompt. In that case, you can use PromptInsertion instead of PromptReplacement inside _get_prompt_updates().

Examples:

Handling prompt updates unrelated to multi-modal data#

_get_prompt_updates() assumes that each application of prompt update corresponds to one multi-modal item. If the HF processor performs additional processing regardless of how many multi-modal items there are, you should override _apply_hf_processor_tokens_only() so that the processed token inputs are consistent with the result of applying the HF processor on text inputs. This is because token inputs bypass the HF processor according to our design.

Examples:

Custom HF processor#

Some models don’t define a HF processor class on HF Hub. In that case, you can define a custom HF processor that has the same call signature as HF processors and pass it to _call_hf_processor().

Examples: