Multi-Modal Support#
This document walks you through the steps to extend a basic model so that it accepts multi-modal inputs.
1. Update the base vLLM model#
It is assumed that you have already implemented the model in vLLM according to these steps. Further update the model as follows:
Reserve a keyword parameter in
forward()
for each input tensor that corresponds to a multi-modal input, as shown in the following example:def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, + pixel_values: torch.Tensor, ) -> SamplerOutput:
More conveniently, you can simply pass
**kwargs
to theforward()
method and retrieve the keyword parameters for multimodal inputs from it.Implement
get_multimodal_embeddings()
that returns the embeddings from running the multimodal inputs through the multimodal tokenizer of the model. Below we provide a boilerplate of a typical implementation pattern, but feel free to adjust it to your own needs.class YourModelForImage2Seq(nn.Module): ... def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor: assert self.vision_encoder is not None image_features = self.vision_encoder(image_input) return self.multi_modal_projector(image_features) def get_multimodal_embeddings(self, **kwargs: object) -> Optional[NestedTensors]: # Validate the multimodal input keyword arguments image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return None # Run multimodal inputs through encoder and projector vision_embeddings = self._process_image_input(image_input) return vision_embeddings
Important
The returned
multimodal_embeddings
must be either a 3Dtorch.Tensor
of shape(num_items, feature_size, hidden_size)
, or a list / tuple of 2Dtorch.Tensor
’s of shape(feature_size, hidden_size)
, so thatmultimodal_embeddings[i]
retrieves the embeddings generated from thei
-th multimodal data item (e.g, image) of the request.Implement
get_input_embeddings()
to mergemultimodal_embeddings
with text embeddings from theinput_ids
. If input processing for the model is implemented correctly (see sections below), then you can leverage the utility function we provide to easily merge the embeddings.from .utils import merge_multimodal_embeddings class YourModelForImage2Seq(nn.Module): ... def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[NestedTensors] = None, ) -> torch.Tensor: # `get_input_embeddings` should already be implemented for the language # model as one of the requirements of basic vLLM model implementation. inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: inputs_embeds = merge_multimodal_embeddings( input_ids=input_ids, inputs_embeds=inputs_embeds, multimodal_embeddings=multimodal_embeddings, placeholder_token_id=self.config.image_token_index) return inputs_embeds
Once the above steps are done, update the model class with the
SupportsMultiModal
interface.+ from vllm.model_executor.models.interfaces import SupportsMultiModal - class YourModelForImage2Seq(nn.Module): + class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
Note
The model class does not have to be named
*ForCausalLM
. Check out the HuggingFace Transformers documentation for some examples.
2. Specify processing information#
Next, create a subclass of BaseProcessingInfo
to provide basic information related to HF processing.
Maximum number of input items#
You need to override the abstract method get_supported_mm_limits()
to return the maximum number of input items for each modality supported by the model.
For example, if the model supports any number of images but only one video per prompt:
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None, "video": 1}
Maximum number of placeholder feature tokens#
Also, override the abstract method get_mm_max_tokens_per_item()
to return the maximum number of placeholder feature tokens per input item for each modality.
When calling the model, the output embeddings from the visual encoder are assigned to the input positions containing placeholder feature tokens. Therefore, the number of placeholder feature tokens should be equal to the size of the output embeddings.
Looking at the code of HF’s LlavaForConditionalGeneration
:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (
(input_ids == self.config.image_token_index)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
The number of placeholder feature tokens per image is image_features.shape[1]
.
image_features
is calculated inside the get_image_features
method:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
We can infer that image_features.shape[1]
is based on image_outputs.hidden_states.shape[1]
from the vision tower
(CLIPVisionModel
for the llava-hf/llava-1.5-7b-hf
model).
Moreover, we only need the sequence length (the second dimension of the tensor) to get image_features.shape[1]
.
The sequence length is determined by the initial hidden states in CLIPVisionTransformer
since the attention
mechanism doesn’t change the sequence length of the output hidden states.
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
To find the sequence length, we turn to the code of CLIPVisionEmbeddings
:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
We can infer that embeddings.shape[1] == self.num_positions
, where
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
Overall, the number of placeholder feature tokens for an image can be calculated as:
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
hf_config = self.get_hf_config()
hf_processor = self.get_hf_processor()
image_size = hf_config.vision_config.image_size
patch_size = hf_config.vision_config.patch_size
num_image_tokens = (image_size // patch_size) ** 2 + 1
if hf_processor.vision_feature_select_strategy == "default":
num_image_tokens -= 1
return num_image_tokens
Notice that the number of image tokens doesn’t depend on the image width and height. So, we can calculate the maximum number of image tokens using any image size:
def get_image_size_with_most_features(self) -> ImageSize:
hf_config = self.get_hf_config()
width = height = hf_config.image_size
return ImageSize(width=width, height=height)
def get_max_image_tokens(self) -> int:
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_image_tokens(
image_width=target_width,
image_height=target_height,
)
And thus, we can override the method as:
def get_mm_max_tokens_per_item(self, seq_len: int) -> Mapping[str, int]:
return {"image": self.get_max_image_tokens()}
Note
Our actual code is more abstracted to support vision encoders other than CLIP.
3. Specify dummy inputs#
Then, inherit BaseDummyInputsBuilder
to construct dummy inputs for
HF processing as well as memory profiling.
For memory profiling#
Override the abstract method get_dummy_processor_inputs()
to construct dummy inputs for memory profiling. This dummy input should result in the worst-case memory usage of
the model so that vLLM can reserve the correct amount of memory for it.
Assuming that the memory usage increases with the number of tokens, the dummy input can be constructed based
on the code for get_mm_max_tokens_per_item()
.
Making use of the get_image_size_with_most_features
method implemented in the previous section:
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
hf_config = self.get_hf_config()
target_width, target_height = self.info.get_image_size_with_most_features()
mm_data = {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
4. Specify processing details#
Afterwards, create a subclass of BaseMultiModalProcessor
to fill in the missing details about HF processing.
See also
Multi-modal fields#
Override _get_mm_fields_config
to
return a schema of the tensors outputted by the HF processor that are related to the input multi-modal items.
Looking at the model’s forward
method:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L387-L404
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
The only related keyword argument is pixel_values
which directly corresponds to input images.
The shape of pixel_values
is (N, C, H, W)
where N
is the number of images.
So, we override the method as follows:
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
)
Note
Our actual code additionally supports
pre-computed image embeddings, which can be passed to be model via the image_embeds
argument.
Prompt replacements#
Override _get_prompt_replacements
to
return a list of PromptReplacement
instances.
Each PromptReplacement
instance specifies a find-and-replace
operation performed by the HF processor.
Looking at HF’s LlavaProcessor
:
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
prompt_strings = []
for sample in text:
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
prompt_strings.append(sample)
It simply repeats each input image_token
a number of times equal to the number of placeholder feature tokens (num_image_tokens
).
Based on this, we override the method as follows:
def _get_prompt_replacements(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> list[PromptReplacement]:
hf_config = self.info.get_hf_config()
image_token_id = hf_config.image_token_index
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width,
image_height=image_size.height,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement,
),
]