Using Kubernetes

Using Kubernetes#

Using Kubernetes to deploy vLLM is a scalable and efficient way to serve machine learning models. This guide will walk you through the process of deploying vLLM with Kubernetes, including the necessary prerequisites, steps for deployment, and testing.

Prerequisites#

Before you begin, ensure that you have the following:

  • A running Kubernetes cluster

  • NVIDIA Kubernetes Device Plugin (k8s-device-plugin): This can be found at https://github.com/NVIDIA/k8s-device-plugin/

  • Available GPU resources in your cluster

Deployment Steps#

  1. Create a PVC, Secret and Deployment for vLLM

    PVC is used to store the model cache and it is optional, you can use hostPath or other storage options

    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
      name: mistral-7b
      namespace: default
    spec:
      accessModes:
      - ReadWriteOnce
      resources:
        requests:
          storage: 50Gi
      storageClassName: default
      volumeMode: Filesystem
    

    Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models

    apiVersion: v1
    kind: Secret
    metadata:
      name: hf-token-secret
      namespace: default
    type: Opaque
    stringData:
      token: "REPLACE_WITH_TOKEN"
    

    Next to create the deployment file for vLLM to run the model server. The following example deploys the Mistral-7B-Instruct-v0.3 model.

    Here are two examples for using NVIDIA GPU and AMD GPU.

    NVIDIA GPU:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: mistral-7b
      namespace: default
      labels:
        app: mistral-7b
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: mistral-7b
      template:
        metadata:
          labels:
            app: mistral-7b
        spec:
          volumes:
          - name: cache-volume
            persistentVolumeClaim:
              claimName: mistral-7b
          # vLLM needs to access the host's shared memory for tensor parallel inference.
          - name: shm
            emptyDir:
              medium: Memory
              sizeLimit: "2Gi"
          containers:
          - name: mistral-7b
            image: vllm/vllm-openai:latest
            command: ["/bin/sh", "-c"]
            args: [
              "vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
            ]
            env:
            - name: HUGGING_FACE_HUB_TOKEN
              valueFrom:
                secretKeyRef:
                  name: hf-token-secret
                  key: token
            ports:
            - containerPort: 8000
            resources:
              limits:
                cpu: "10"
                memory: 20G
                nvidia.com/gpu: "1"
              requests:
                cpu: "2"
                memory: 6G
                nvidia.com/gpu: "1"
            volumeMounts:
            - mountPath: /root/.cache/huggingface
              name: cache-volume
            - name: shm
              mountPath: /dev/shm
            livenessProbe:
              httpGet:
                path: /health
                port: 8000
              initialDelaySeconds: 60
              periodSeconds: 10
            readinessProbe:
              httpGet:
                path: /health
                port: 8000
              initialDelaySeconds: 60
              periodSeconds: 5
    

    AMD GPU:

    You can refer to the deployment.yaml below if using AMD ROCm GPU like MI300X.

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: mistral-7b
      namespace: default
      labels:
        app: mistral-7b
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: mistral-7b
      template:
        metadata:
          labels:
            app: mistral-7b
        spec:
          volumes:
          # PVC
          - name: cache-volume
            persistentVolumeClaim:
              claimName: mistral-7b
          # vLLM needs to access the host's shared memory for tensor parallel inference.
          - name: shm
            emptyDir:
              medium: Memory
              sizeLimit: "8Gi"
          hostNetwork: true
          hostIPC: true
          containers:
          - name: mistral-7b
            image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
            securityContext:
              seccompProfile:
                type: Unconfined
              runAsGroup: 44
              capabilities:
                add:
                - SYS_PTRACE
            command: ["/bin/sh", "-c"]
            args: [
              "vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
            ]
            env:
            - name: HUGGING_FACE_HUB_TOKEN
              valueFrom:
                secretKeyRef:
                  name: hf-token-secret
                  key: token
            ports:
            - containerPort: 8000
            resources:
              limits:
                cpu: "10"
                memory: 20G
                amd.com/gpu: "1"
              requests:
                cpu: "6"
                memory: 6G
                amd.com/gpu: "1"
            volumeMounts:
            - name: cache-volume
              mountPath: /root/.cache/huggingface
            - name: shm
              mountPath: /dev/shm
    

    You can get the full example with steps and sample yaml files from ROCm/k8s-device-plugin.

  2. Create a Kubernetes Service for vLLM

    Next, create a Kubernetes Service file to expose the mistral-7b deployment:

    apiVersion: v1
    kind: Service
    metadata:
      name: mistral-7b
      namespace: default
    spec:
      ports:
      - name: http-mistral-7b
        port: 80
        protocol: TCP
        targetPort: 8000
      # The label selector should match the deployment labels & it is useful for prefix caching feature
      selector:
        app: mistral-7b
      sessionAffinity: None
      type: ClusterIP
    
  3. Deploy and Test

    Apply the deployment and service configurations using kubectl apply -f <filename>:

    kubectl apply -f deployment.yaml
    kubectl apply -f service.yaml
    

    To test the deployment, run the following curl command:

    curl http://mistral-7b.default.svc.cluster.local/v1/completions \
      -H "Content-Type: application/json" \
      -d '{
            "model": "mistralai/Mistral-7B-Instruct-v0.3",
            "prompt": "San Francisco is a",
            "max_tokens": 7,
            "temperature": 0
          }'
    

    If the service is correctly deployed, you should receive a response from the vLLM model.

Conclusion#

Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation.