LoRA With Quantization Inference
Source examples/offline_inference/lora_with_quantization_inference.py.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This example shows how to use LoRA with different quantization techniques
for offline inference.
Requires HuggingFace credentials for access.
"""
import gc
from typing import Optional
import torch
from huggingface_hub import snapshot_download
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams
from vllm.lora.request import LoRARequest
def create_test_prompts(
lora_path: str,
) -> list[tuple[str, SamplingParams, Optional[LoRARequest]]]:
return [
# this is an example of using quantization without LoRA
(
"My name is",
SamplingParams(
temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128
),
None,
),
# the next three examples use quantization with LoRA
(
"my name is",
SamplingParams(
temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128
),
LoRARequest("lora-test-1", 1, lora_path),
),
(
"The capital of USA is",
SamplingParams(
temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128
),
LoRARequest("lora-test-2", 1, lora_path),
),
(
"The capital of France is",
SamplingParams(
temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128
),
LoRARequest("lora-test-3", 1, lora_path),
),
]
def process_requests(
engine: LLMEngine,
test_prompts: list[tuple[str, SamplingParams, Optional[LoRARequest]]],
):
"""Continuously process a list of prompts and handle the outputs."""
request_id = 0
while test_prompts or engine.has_unfinished_requests():
if test_prompts:
prompt, sampling_params, lora_request = test_prompts.pop(0)
engine.add_request(
str(request_id), prompt, sampling_params, lora_request=lora_request
)
request_id += 1
request_outputs: list[RequestOutput] = engine.step()
for request_output in request_outputs:
if request_output.finished:
print("----------------------------------------------------")
print(f"Prompt: {request_output.prompt}")
print(f"Output: {request_output.outputs[0].text}")
def initialize_engine(
model: str, quantization: str, lora_repo: Optional[str]
) -> LLMEngine:
"""Initialize the LLMEngine."""
engine_args = EngineArgs(
model=model,
quantization=quantization,
enable_lora=True,
max_lora_rank=64,
max_loras=4,
)
return LLMEngine.from_engine_args(engine_args)
def main():
"""Main function that sets up and runs the prompt processing."""
test_configs = [
# QLoRA (https://arxiv.org/abs/2305.14314)
{
"name": "qlora_inference_example",
"model": "huggyllama/llama-7b",
"quantization": "bitsandbytes",
"lora_repo": "timdettmers/qlora-flan-7b",
},
{
"name": "AWQ_inference_with_lora_example",
"model": "TheBloke/TinyLlama-1.1B-Chat-v0.3-AWQ",
"quantization": "awq",
"lora_repo": "jashing/tinyllama-colorist-lora",
},
{
"name": "GPTQ_inference_with_lora_example",
"model": "TheBloke/TinyLlama-1.1B-Chat-v0.3-GPTQ",
"quantization": "gptq",
"lora_repo": "jashing/tinyllama-colorist-lora",
},
]
for test_config in test_configs:
print(f"~~~~~~~~~~~~~~~~ Running: {test_config['name']} ~~~~~~~~~~~~~~~~")
engine = initialize_engine(
test_config["model"], test_config["quantization"], test_config["lora_repo"]
)
lora_path = snapshot_download(repo_id=test_config["lora_repo"])
test_prompts = create_test_prompts(lora_path)
process_requests(engine, test_prompts)
# Clean up the GPU memory for the next test
del engine
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
main()