Qwen 1M
Source examples/offline_inference/qwen_1m.py.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from urllib.request import urlopen
from vllm import LLM, SamplingParams
os.environ["VLLM_ATTENTION_BACKEND"] = "DUAL_CHUNK_FLASH_ATTN"
os.environ["VLLM_ALLOW_LONG_MAX_MODEL_LEN"] = "1"
def load_prompt() -> str:
# Test cases with various lengths can be found at:
#
# https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/test-data/64k.txt
# https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/test-data/200k.txt
# https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/test-data/600k.txt
# https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/test-data/1m.txt
with urlopen(
"https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/test-data/600k.txt",
timeout=5,
) as response:
prompt = response.read().decode("utf-8")
return prompt
# Processing the prompt.
def process_requests(llm: LLM, prompts: list[str]) -> None:
# Create a sampling params object.
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.8,
top_k=20,
repetition_penalty=1.05,
detokenize=True,
max_tokens=256,
)
# Generate texts from the prompts.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt_token_ids = output.prompt_token_ids
generated_text = output.outputs[0].text
print(
f"Prompt length: {len(prompt_token_ids)}, "
f"Generated text: {generated_text!r}"
)
# Create an LLM.
def initialize_engine() -> LLM:
llm = LLM(
model="Qwen/Qwen2.5-7B-Instruct-1M",
max_model_len=1048576,
tensor_parallel_size=4,
enforce_eager=True,
enable_chunked_prefill=True,
max_num_batched_tokens=131072,
)
return llm
def main():
llm = initialize_engine()
prompt = load_prompt()
process_requests(llm, [prompt])
if __name__ == "__main__":
main()