Multi Instance Data Parallel
Source examples/online_serving/multi_instance_data_parallel.py.
# SPDX-License-Identifier: Apache-2.0
import asyncio
from typing import Optional
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
"""
To run this example, run the following commands simultaneously with
different CUDA_VISIBLE_DEVICES:
python examples/online_serving/multi_instance_data_parallel.py
vllm serve ibm-research/PowerMoE-3b -dp 2 -dpr 1 \
--data-parallel-address 127.0.0.1 --data-parallel-rpc-port 62300 \
--data-parallel-size-local 1 --enforce-eager --headless
Once both instances have completed the handshake, this example will
send a request to the instance with DP rank 1.
"""
async def main():
engine_args = AsyncEngineArgs(
model="ibm-research/PowerMoE-3b",
data_parallel_size=2,
dtype="auto",
max_model_len=2048,
data_parallel_address="127.0.0.1",
data_parallel_rpc_port=62300,
data_parallel_size_local=1,
enforce_eager=True,
)
engine_client = AsyncLLMEngine.from_engine_args(engine_args)
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=100,
)
prompt = "Who won the 2004 World Series?"
final_output: Optional[RequestOutput] = None
async for output in engine_client.generate(
prompt=prompt,
sampling_params=sampling_params,
request_id="abcdef",
data_parallel_rank=1,
):
final_output = output
if final_output:
print(final_output.outputs[0].text)
if __name__ == "__main__":
asyncio.run(main())