Ray Serve Deepseek
Source examples/online_serving/ray_serve_deepseek.py.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Example to deploy DeepSeek R1 or V3 with Ray Serve LLM.
See more details at:
https://docs.ray.io/en/latest/serve/tutorials/serve-deepseek.html
And see Ray Serve LLM documentation at:
https://docs.ray.io/en/latest/serve/llm/serving-llms.html
Run `python3 ray_serve_deepseek.py` to deploy the model.
"""
from ray import serve
from ray.serve.llm import LLMConfig, build_openai_app
llm_config = LLMConfig(
model_loading_config={
"model_id": "deepseek",
# Since DeepSeek model is huge, it is recommended to pre-download
# the model to local disk, say /path/to/the/model and specify:
# model_source="/path/to/the/model"
"model_source": "deepseek-ai/DeepSeek-R1",
},
deployment_config={
"autoscaling_config": {
"min_replicas": 1,
"max_replicas": 1,
}
},
# Change to the accelerator type of the node
accelerator_type="H100",
runtime_env={"env_vars": {"VLLM_USE_V1": "1"}},
# Customize engine arguments as needed (e.g. vLLM engine kwargs)
engine_kwargs={
"tensor_parallel_size": 8,
"pipeline_parallel_size": 2,
"gpu_memory_utilization": 0.92,
"dtype": "auto",
"max_num_seqs": 40,
"max_model_len": 16384,
"enable_chunked_prefill": True,
"enable_prefix_caching": True,
"trust_remote_code": True,
},
)
# Deploy the application
llm_app = build_openai_app({"llm_configs": [llm_config]})
serve.run(llm_app)