Source examples/offline_inference/embed_jina_embeddings_v3.py.
Embed Jina Embeddings V3#
# SPDX-License-Identifier: Apache-2.0
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(model="jinaai/jina-embeddings-v3",
task="embed",
trust_remote_code=True)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
prompts = [
"Follow the white rabbit.", # English
"Sigue al conejo blanco.", # Spanish
"Suis le lapin blanc.", # French
"跟着白兔走。", # Chinese
"اتبع الأرنب الأبيض.", # Arabic
"Folge dem weißen Kaninchen.", # German
]
# Create an LLM.
# You should pass task="embed" for embedding models
model = LLM(**vars(args))
# Generate embedding. The output is a list of EmbeddingRequestOutputs.
# Only text matching task is supported for now. See #16120
outputs = model.embed(prompts)
# Print the outputs.
print("\nGenerated Outputs:")
print("Only text matching task is supported for now. See #16120")
print("-" * 60)
for prompt, output in zip(prompts, outputs):
embeds = output.outputs.embedding
embeds_trimmed = ((str(embeds[:16])[:-1] +
", ...]") if len(embeds) > 16 else embeds)
print(f"Prompt: {prompt!r} \n"
f"Embeddings for text matching: {embeds_trimmed} "
f"(size={len(embeds)})")
print("-" * 60)
if __name__ == "__main__":
args = parse_args()
main(args)