Source examples/offline_inference/structured_outputs.py.
Structured Outputs#
from enum import Enum
from pydantic import BaseModel
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
llm = LLM(model="Qwen/Qwen2.5-3B-Instruct", max_model_len=100)
# Guided decoding by Choice (list of possible options)
guided_decoding_params = GuidedDecodingParams(choice=["Positive", "Negative"])
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
outputs = llm.generate(
prompts="Classify this sentiment: vLLM is wonderful!",
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)
# Guided decoding by Regex
guided_decoding_params = GuidedDecodingParams(regex="\w+@\w+\.com\n")
sampling_params = SamplingParams(guided_decoding=guided_decoding_params,
stop=["\n"])
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
"End in .com and new line. Example result:"
"[email protected]\n")
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
# Guided decoding by JSON using Pydantic schema
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
json_schema = CarDescription.model_json_schema()
guided_decoding_params = GuidedDecodingParams(json=json_schema)
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
prompt = ("Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's")
outputs = llm.generate(
prompts=prompt,
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)
# Guided decoding by Grammar
simplified_sql_grammar = """
?start: select_statement
?select_statement: "SELECT " column_list " FROM " table_name
?column_list: column_name ("," column_name)*
?table_name: identifier
?column_name: identifier
?identifier: /[a-zA-Z_][a-zA-Z0-9_]*/
"""
guided_decoding_params = GuidedDecodingParams(grammar=simplified_sql_grammar)
sampling_params = SamplingParams(guided_decoding=guided_decoding_params)
prompt = ("Generate an SQL query to show the 'username' and 'email'"
"from the 'users' table.")
outputs = llm.generate(
prompts=prompt,
sampling_params=sampling_params,
)
print(outputs[0].outputs[0].text)