Source examples/offline_inference/whisper.py.
Whisper#
import time
from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
# Create a Whisper encoder/decoder model instance
llm = LLM(
model="openai/whisper-large-v3",
max_model_len=448,
max_num_seqs=400,
limit_mm_per_prompt={"audio": 1},
kv_cache_dtype="fp8",
)
prompts = [
{
"prompt": "<|startoftranscript|>",
"multi_modal_data": {
"audio": AudioAsset("mary_had_lamb").audio_and_sample_rate,
},
},
{ # Test explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {
"audio": AudioAsset("winning_call").audio_and_sample_rate,
},
},
"decoder_prompt": "<|startoftranscript|>",
}
] * 1024
# Create a sampling params object.
sampling_params = SamplingParams(
temperature=0,
top_p=1.0,
max_tokens=200,
)
start = time.time()
# Generate output tokens from the prompts. The output is a list of
# RequestOutput objects that contain the prompt, generated
# text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
encoder_prompt = output.encoder_prompt
generated_text = output.outputs[0].text
print(f"Encoder prompt: {encoder_prompt!r}, "
f"Decoder prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
duration = time.time() - start
print("Duration:", duration)
print("RPS:", len(prompts) / duration)