Multimodal Inputs#

This page teaches you how to pass multi-modal inputs to multi-modal models in vLLM.

Note

We are actively iterating on multi-modal support. See this RFC for upcoming changes, and open an issue on GitHub if you have any feedback or feature requests.

Offline Inference#

To input multi-modal data, follow this schema in vllm.inputs.PromptType:

Image Inputs#

You can pass a single image to the 'image' field of the multi-modal dictionary, as shown in the following examples:

from vllm import LLM

llm = LLM(model="llava-hf/llava-1.5-7b-hf")

# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"

# Load the image using PIL.Image
image = PIL.Image.open(...)

# Single prompt inference
outputs = llm.generate({
    "prompt": prompt,
    "multi_modal_data": {"image": image},
})

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

# Batch inference
image_1 = PIL.Image.open(...)
image_2 = PIL.Image.open(...)
outputs = llm.generate(
    [
        {
            "prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
            "multi_modal_data": {"image": image_1},
        },
        {
            "prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
            "multi_modal_data": {"image": image_2},
        }
    ]
)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Full example: examples/offline_inference/vision_language.py

To substitute multiple images inside the same text prompt, you can pass in a list of images instead:

from vllm import LLM

llm = LLM(
    model="microsoft/Phi-3.5-vision-instruct",
    trust_remote_code=True,  # Required to load Phi-3.5-vision
    max_model_len=4096,  # Otherwise, it may not fit in smaller GPUs
    limit_mm_per_prompt={"image": 2},  # The maximum number to accept
)

# Refer to the HuggingFace repo for the correct format to use
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"

# Load the images using PIL.Image
image1 = PIL.Image.open(...)
image2 = PIL.Image.open(...)

outputs = llm.generate({
    "prompt": prompt,
    "multi_modal_data": {
        "image": [image1, image2]
    },
})

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Full example: examples/offline_inference/vision_language_multi_image.py

Multi-image input can be extended to perform video captioning. We show this with Qwen2-VL as it supports videos:

from vllm import LLM

# Specify the maximum number of frames per video to be 4. This can be changed.
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})

# Create the request payload.
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
message = {
    "role": "user",
    "content": [
        {"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
    ],
}
for i in range(len(video_frames)):
    base64_image = encode_image(video_frames[i]) # base64 encoding.
    new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
    message["content"].append(new_image)

# Perform inference and log output.
outputs = llm.chat([message])

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Video Inputs#

You can pass a list of NumPy arrays directly to the 'video' field of the multi-modal dictionary instead of using multi-image input.

Full example: examples/offline_inference/vision_language.py

Audio Inputs#

You can pass a tuple (array, sampling_rate) to the 'audio' field of the multi-modal dictionary.

Full example: examples/offline_inference/audio_language.py

Embedding Inputs#

To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model, pass a tensor of shape (num_items, feature_size, hidden_size of LM) to the corresponding field of the multi-modal dictionary.

from vllm import LLM

# Inference with image embeddings as input
llm = LLM(model="llava-hf/llava-1.5-7b-hf")

# Refer to the HuggingFace repo for the correct format to use
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"

# Embeddings for single image
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
image_embeds = torch.load(...)

outputs = llm.generate({
    "prompt": prompt,
    "multi_modal_data": {"image": image_embeds},
})

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings:

# Construct the prompt based on your model
prompt = ...

# Embeddings for multiple images
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
image_embeds = torch.load(...)

# Qwen2-VL
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
mm_data = {
    "image": {
        "image_embeds": image_embeds,
        # image_grid_thw is needed to calculate positional encoding.
        "image_grid_thw": torch.load(...),  # torch.Tensor of shape (1, 3),
    }
}

# MiniCPM-V
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
mm_data = {
    "image": {
        "image_embeds": image_embeds,
        # image_sizes is needed to calculate details of the sliced image.
        "image_sizes": [image.size for image in images],  # list of image sizes
    }
}

outputs = llm.generate({
    "prompt": prompt,
    "multi_modal_data": mm_data,
})

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Online Serving#

Our OpenAI-compatible server accepts multi-modal data via the Chat Completions API.

Important

A chat template is required to use Chat Completions API. For HF format models, the default chat template is defined inside chat_template.json or tokenizer_config.json.

If no default chat template is available, we will first look for a built-in fallback in vllm/transformers_utils/chat_templates/registry.py. If no fallback is available, an error is raised and you have to provide the chat template manually via the --chat-template argument.

For certain models, we provide alternative chat templates inside vllm/examples. For example, VLM2Vec uses examples/template_vlm2vec.jinja which is different from the default one for Phi-3-Vision.

Image Inputs#

Image input is supported according to OpenAI Vision API. Here is a simple example using Phi-3.5-Vision.

First, launch the OpenAI-compatible server:

vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
  --trust-remote-code --max-model-len 4096 --limit-mm-per-prompt '{"image":2}'

Then, you can use the OpenAI client as follows:

from openai import OpenAI

openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

# Single-image input inference
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"

chat_response = client.chat.completions.create(
    model="microsoft/Phi-3.5-vision-instruct",
    messages=[{
        "role": "user",
        "content": [
            # NOTE: The prompt formatting with the image token `<image>` is not needed
            # since the prompt will be processed automatically by the API server.
            {"type": "text", "text": "What’s in this image?"},
            {"type": "image_url", "image_url": {"url": image_url}},
        ],
    }],
)
print("Chat completion output:", chat_response.choices[0].message.content)

# Multi-image input inference
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"

chat_response = client.chat.completions.create(
    model="microsoft/Phi-3.5-vision-instruct",
    messages=[{
        "role": "user",
        "content": [
            {"type": "text", "text": "What are the animals in these images?"},
            {"type": "image_url", "image_url": {"url": image_url_duck}},
            {"type": "image_url", "image_url": {"url": image_url_lion}},
        ],
    }],
)
print("Chat completion output:", chat_response.choices[0].message.content)

Full example: examples/online_serving/openai_chat_completion_client_for_multimodal.py

Tip

Loading from local file paths is also supported on vLLM: You can specify the allowed local media path via --allowed-local-media-path when launching the API server/engine, and pass the file path as url in the API request.

Tip

There is no need to place image placeholders in the text content of the API request - they are already represented by the image content. In fact, you can place image placeholders in the middle of the text by interleaving text and image content.

Note

By default, the timeout for fetching images through HTTP URL is 5 seconds. You can override this by setting the environment variable:

export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>

Video Inputs#

Instead of image_url, you can pass a video file via video_url. Here is a simple example using LLaVA-OneVision.

First, launch the OpenAI-compatible server:

vllm serve llava-hf/llava-onevision-qwen2-0.5b-ov-hf --task generate --max-model-len 8192

Then, you can use the OpenAI client as follows:

from openai import OpenAI

openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

video_url = "http://commondatastorage.googleapis.com/gtv-videos-bucket/sample/ForBiggerFun.mp4"

## Use video url in the payload
chat_completion_from_url = client.chat.completions.create(
    messages=[{
        "role":
        "user",
        "content": [
            {
                "type": "text",
                "text": "What's in this video?"
            },
            {
                "type": "video_url",
                "video_url": {
                    "url": video_url
                },
            },
        ],
    }],
    model=model,
    max_completion_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from image url:", result)

Full example: examples/online_serving/openai_chat_completion_client_for_multimodal.py

Note

By default, the timeout for fetching videos through HTTP URL is 30 seconds. You can override this by setting the environment variable:

export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>

Audio Inputs#

Audio input is supported according to OpenAI Audio API. Here is a simple example using Ultravox-v0.5-1B.

First, launch the OpenAI-compatible server:

vllm serve fixie-ai/ultravox-v0_5-llama-3_2-1b

Then, you can use the OpenAI client as follows:

import base64
import requests
from openai import OpenAI
from vllm.assets.audio import AudioAsset

def encode_base64_content_from_url(content_url: str) -> str:
    """Encode a content retrieved from a remote url to base64 format."""

    with requests.get(content_url) as response:
        response.raise_for_status()
        result = base64.b64encode(response.content).decode('utf-8')

    return result

openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

# Any format supported by librosa is supported
audio_url = AudioAsset("winning_call").url
audio_base64 = encode_base64_content_from_url(audio_url)

chat_completion_from_base64 = client.chat.completions.create(
    messages=[{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "What's in this audio?"
            },
            {
                "type": "input_audio",
                "input_audio": {
                    "data": audio_base64,
                    "format": "wav"
                },
            },
        ],
    }],
    model=model,
    max_completion_tokens=64,
)

result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)

Alternatively, you can pass audio_url, which is the audio counterpart of image_url for image input:

chat_completion_from_url = client.chat.completions.create(
    messages=[{
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "What's in this audio?"
            },
            {
                "type": "audio_url",
                "audio_url": {
                    "url": audio_url
                },
            },
        ],
    }],
    model=model,
    max_completion_tokens=64,
)

result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)

Full example: examples/online_serving/openai_chat_completion_client_for_multimodal.py

Note

By default, the timeout for fetching audios through HTTP URL is 10 seconds. You can override this by setting the environment variable:

export VLLM_AUDIO_FETCH_TIMEOUT=<timeout>

Embedding Inputs#

To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model, pass a tensor of shape to the corresponding field of the multi-modal dictionary.

Image Embedding Inputs#

For image embeddings, you can pass the base64-encoded tensor to the image_embeds field. The following example demonstrates how to pass image embeddings to the OpenAI server:

image_embedding = torch.load(...)
grid_thw = torch.load(...) # Required by Qwen/Qwen2-VL-2B-Instruct

buffer = io.BytesIO()
torch.save(image_embedding, buffer)
buffer.seek(0)
binary_data = buffer.read()
base64_image_embedding = base64.b64encode(binary_data).decode('utf-8')

client = OpenAI(
    # defaults to os.environ.get("OPENAI_API_KEY")
    api_key=openai_api_key,
    base_url=openai_api_base,
)

# Basic usage - this is equivalent to the LLaVA example for offline inference
model = "llava-hf/llava-1.5-7b-hf"
embeds =  {
    "type": "image_embeds",
    "image_embeds": f"{base64_image_embedding}" 
}

# Pass additional parameters (available to Qwen2-VL and MiniCPM-V)
model = "Qwen/Qwen2-VL-2B-Instruct"
embeds =  {
    "type": "image_embeds",
    "image_embeds": {
        "image_embeds": f"{base64_image_embedding}" , # Required
        "image_grid_thw": f"{base64_image_grid_thw}"  # Required by Qwen/Qwen2-VL-2B-Instruct
    },
}
model = "openbmb/MiniCPM-V-2_6"
embeds =  {
    "type": "image_embeds",
    "image_embeds": {
        "image_embeds": f"{base64_image_embedding}" , # Required
        "image_sizes": f"{base64_image_sizes}"  # Required by openbmb/MiniCPM-V-2_6
    },
}
chat_completion = client.chat.completions.create(
    messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": [
        {
            "type": "text",
            "text": "What's in this image?",
        },
        embeds,
        ],
    },
],
    model=model,
)

Note

Only one message can contain {"type": "image_embeds"}. If used with a model that requires additional parameters, you must also provide a tensor for each of them, e.g. image_grid_thw, image_sizes, etc.