Using Kubernetes#
Deploying vLLM on Kubernetes is a scalable and efficient way to serve machine learning models. This guide walks you through deploying vLLM using native Kubernetes.
Alternatively, you can deploy vLLM to Kubernetes using any of the following:
Deployment with CPUs#
Note
The use of CPUs here is for demonstration and testing purposes only and its performance will not be on par with GPUs.
First, create a Kubernetes PVC and Secret for downloading and storing Hugging Face model:
cat <<EOF |kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: vllm-models
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 50Gi
---
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
type: Opaque
data:
token: $(HF_TOKEN)
EOF
Next, start the vLLM server as a Kubernetes Deployment and Service:
cat <<EOF |kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: vllm-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: vllm
template:
metadata:
labels:
app.kubernetes.io/name: vllm
spec:
containers:
- name: vllm
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HUGGING_FACE_HUB_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
volumeMounts:
- name: llama-storage
mountPath: /root/.cache/huggingface
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: vllm-models
---
apiVersion: v1
kind: Service
metadata:
name: vllm-server
spec:
selector:
app.kubernetes.io/name: vllm
ports:
- protocol: TCP
port: 8000
targetPort: 8000
type: ClusterIP
EOF
We can verify that the vLLM server has started successfully via the logs (this might take a couple of minutes to download the model):
kubectl logs -l app.kubernetes.io/name=vllm
...
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
Deployment with GPUs#
Pre-requisite: Ensure that you have a running Kubernetes cluster with GPUs.
Create a PVC, Secret and Deployment for vLLM
PVC is used to store the model cache and it is optional, you can use hostPath or other storage options
apiVersion: v1 kind: PersistentVolumeClaim metadata: name: mistral-7b namespace: default spec: accessModes: - ReadWriteOnce resources: requests: storage: 50Gi storageClassName: default volumeMode: Filesystem
Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models
apiVersion: v1 kind: Secret metadata: name: hf-token-secret namespace: default type: Opaque stringData: token: "REPLACE_WITH_TOKEN"
Next to create the deployment file for vLLM to run the model server. The following example deploys the
Mistral-7B-Instruct-v0.3
model.Here are two examples for using NVIDIA GPU and AMD GPU.
NVIDIA GPU:
apiVersion: apps/v1 kind: Deployment metadata: name: mistral-7b namespace: default labels: app: mistral-7b spec: replicas: 1 selector: matchLabels: app: mistral-7b template: metadata: labels: app: mistral-7b spec: volumes: - name: cache-volume persistentVolumeClaim: claimName: mistral-7b # vLLM needs to access the host's shared memory for tensor parallel inference. - name: shm emptyDir: medium: Memory sizeLimit: "2Gi" containers: - name: mistral-7b image: vllm/vllm-openai:latest command: ["/bin/sh", "-c"] args: [ "vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024" ] env: - name: HUGGING_FACE_HUB_TOKEN valueFrom: secretKeyRef: name: hf-token-secret key: token ports: - containerPort: 8000 resources: limits: cpu: "10" memory: 20G nvidia.com/gpu: "1" requests: cpu: "2" memory: 6G nvidia.com/gpu: "1" volumeMounts: - mountPath: /root/.cache/huggingface name: cache-volume - name: shm mountPath: /dev/shm livenessProbe: httpGet: path: /health port: 8000 initialDelaySeconds: 60 periodSeconds: 10 readinessProbe: httpGet: path: /health port: 8000 initialDelaySeconds: 60 periodSeconds: 5
AMD GPU:
You can refer to the
deployment.yaml
below if using AMD ROCm GPU like MI300X.apiVersion: apps/v1 kind: Deployment metadata: name: mistral-7b namespace: default labels: app: mistral-7b spec: replicas: 1 selector: matchLabels: app: mistral-7b template: metadata: labels: app: mistral-7b spec: volumes: # PVC - name: cache-volume persistentVolumeClaim: claimName: mistral-7b # vLLM needs to access the host's shared memory for tensor parallel inference. - name: shm emptyDir: medium: Memory sizeLimit: "8Gi" hostNetwork: true hostIPC: true containers: - name: mistral-7b image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 securityContext: seccompProfile: type: Unconfined runAsGroup: 44 capabilities: add: - SYS_PTRACE command: ["/bin/sh", "-c"] args: [ "vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024" ] env: - name: HUGGING_FACE_HUB_TOKEN valueFrom: secretKeyRef: name: hf-token-secret key: token ports: - containerPort: 8000 resources: limits: cpu: "10" memory: 20G amd.com/gpu: "1" requests: cpu: "6" memory: 6G amd.com/gpu: "1" volumeMounts: - name: cache-volume mountPath: /root/.cache/huggingface - name: shm mountPath: /dev/shm
You can get the full example with steps and sample yaml files from ROCm/k8s-device-plugin.
Create a Kubernetes Service for vLLM
Next, create a Kubernetes Service file to expose the
mistral-7b
deployment:apiVersion: v1 kind: Service metadata: name: mistral-7b namespace: default spec: ports: - name: http-mistral-7b port: 80 protocol: TCP targetPort: 8000 # The label selector should match the deployment labels & it is useful for prefix caching feature selector: app: mistral-7b sessionAffinity: None type: ClusterIP
Deploy and Test
Apply the deployment and service configurations using
kubectl apply -f <filename>
:kubectl apply -f deployment.yaml kubectl apply -f service.yaml
To test the deployment, run the following
curl
command:curl http://mistral-7b.default.svc.cluster.local/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "mistralai/Mistral-7B-Instruct-v0.3", "prompt": "San Francisco is a", "max_tokens": 7, "temperature": 0 }'
If the service is correctly deployed, you should receive a response from the vLLM model.
Conclusion#
Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation.