Reasoning Outputs#
vLLM offers support for reasoning models like DeepSeek R1, which are designed to generate outputs containing both reasoning steps and final conclusions.
Reasoning models return an additional reasoning_content
field in their outputs, which contains the reasoning steps that led to the final conclusion. This field is not present in the outputs of other models.
Supported Models#
vLLM currently supports the following reasoning models:
Model Series |
Parser Name |
Structured Output Support |
Tool Calling |
---|---|---|---|
|
|
❌ |
|
|
|
✅ |
|
|
❌ |
❌ |
|
|
|
✅ |
Note
IBM Granite 3.2 reasoning is disabled by default; to enable it, you must also pass thinking=True
in your chat_template_kwargs
.
The reasoning feature for the Qwen3 series is enabled by default. To disable it, you must pass enable_thinking=False
in your chat_template_kwargs
.
Quickstart#
To use reasoning models, you need to specify the --reasoning-parser
flags when making a request to the chat completion endpoint. The --reasoning-parser
flag specifies the reasoning parser to use for extracting reasoning content from the model output.
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --reasoning-parser deepseek_r1
Next, make a request to the model that should return the reasoning content in the response.
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
response = client.chat.completions.create(model=model, messages=messages)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
print("reasoning_content:", reasoning_content)
print("content:", content)
The reasoning_content
field contains the reasoning steps that led to the final conclusion, while the content
field contains the final conclusion.
Streaming chat completions#
Streaming chat completions are also supported for reasoning models. The reasoning_content
field is available in the delta
field in chat completion response chunks.
{
"id": "chatcmpl-123",
"object": "chat.completion.chunk",
"created": 1694268190,
"model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"reasoning_content": "is",
},
"logprobs": null,
"finish_reason": null
}
]
}
OpenAI Python client library does not officially support reasoning_content
attribute for streaming output. But the client supports extra attributes in the response. You can use hasattr
to check if the reasoning_content
attribute is present in the response. For example:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
# For Qwen3 series, if you want to disable thinking in reasoning mode, add:
# extra_body={"chat_template_kwargs": {"enable_thinking": False}}
stream = client.chat.completions.create(model=model,
messages=messages,
stream=True)
print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False
for chunk in stream:
reasoning_content = None
content = None
# Check the content is reasoning_content or content
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content = chunk.choices[0].delta.reasoning_content
elif hasattr(chunk.choices[0].delta, "content"):
content = chunk.choices[0].delta.content
if reasoning_content is not None:
if not printed_reasoning_content:
printed_reasoning_content = True
print("reasoning_content:", end="", flush=True)
print(reasoning_content, end="", flush=True)
elif content is not None:
if not printed_content:
printed_content = True
print("\ncontent:", end="", flush=True)
# Extract and print the content
print(content, end="", flush=True)
Remember to check whether the reasoning_content
exists in the response before accessing it. You could checkout the example.
Structured output#
The reasoning content is also available in the structured output. The structured output engine like xgrammar
will use the reasoning content to generate structured output. It is only supported in v0 engine now.
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --reasoning-parser deepseek_r1
The following is an example client:
from openai import OpenAI
from pydantic import BaseModel
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
class People(BaseModel):
name: str
age: int
json_schema = People.model_json_schema()
prompt = ("Generate a JSON with the name and age of one random person.")
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_json": json_schema},
)
print("reasoning_content: ", completion.choices[0].message.reasoning_content)
print("content: ", completion.choices[0].message.content)
Tool Calling#
The reasoning content is also available when both tool calling and the reasoning parser are enabled. Additionally, tool calling only parses functions from the content
field, not from the reasoning_content
.
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location", "unit"]
}
}
}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
tools=tools,
tool_choice="auto"
)
print(response)
tool_call = response.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")
For more examples, please refer to examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py.
Limitations#
The reasoning content is only available for online serving’s chat completion endpoint (
/v1/chat/completions
).
How to support a new reasoning model#
You can add a new ReasoningParser
similar to vllm/reasoning/deepseek_r1_reasoning_parser.py.
# import the required packages
from vllm.reasoning import ReasoningParser, ReasoningParserManager
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage)
# define a reasoning parser and register it to vllm
# the name list in register_module can be used
# in --reasoning-parser.
@ReasoningParserManager.register_module(["example"])
class ExampleParser(ReasoningParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Instance method that should be implemented for extracting reasoning
from an incomplete response; for use when handling reasoning calls and
streaming. Has to be an instance method because it requires state -
the current tokens/diffs, but also the information about what has
previously been parsed and extracted (see constructor)
"""
def extract_reasoning_content(
self, model_output: str, request: ChatCompletionRequest
) -> tuple[Optional[str], Optional[str]]:
"""
Extract reasoning content from a complete model-generated string.
Used for non-streaming responses where we have the entire model response
available before sending to the client.
Parameters:
model_output: str
The model-generated string to extract reasoning content from.
request: ChatCompletionRequest
The request object that was used to generate the model_output.
Returns:
tuple[Optional[str], Optional[str]]
A tuple containing the reasoning content and the content.
"""
Additionally, to enable structured output, you’ll need to create a new Reasoner
similar to the one in vllm/reasoning/deepseek_r1_reasoning_parser.py.
@dataclass
class DeepSeekReasoner(Reasoner):
"""
Reasoner for DeepSeek R series models.
"""
start_token_id: int
end_token_id: int
start_token: str = "<think>"
end_token: str = "</think>"
@classmethod
def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
return cls(start_token_id=tokenizer.encode(
"<think>", add_special_tokens=False)[0],
end_token_id=tokenizer.encode("</think>",
add_special_tokens=False)[0])
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.end_token_id in input_ids
...
The structured output engine like xgrammar will use end_token_id
to check if the reasoning content is present in the model output and skip the structured output if it is the case.
Finally, you can enable reasoning for the model by using the --reasoning-parser
flags.
vllm serve <model_tag> --reasoning-parser example