Source examples/online_serving/openai_chat_completion_structured_outputs.py.
OpenAI Chat Completion Structured Outputs#
# SPDX-License-Identifier: Apache-2.0
"""
To run this example, you need to start the vLLM server:
```bash
vllm serve Qwen/Qwen2.5-3B-Instruct
```
"""
from enum import Enum
from openai import BadRequestError, OpenAI
from pydantic import BaseModel
# Guided decoding by Choice (list of possible options)
def guided_choice_completion(client: OpenAI, model: str):
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": "Classify this sentiment: vLLM is wonderful!"
}],
extra_body={"guided_choice": ["positive", "negative"]},
)
return completion.choices[0].message.content
# Guided decoding by Regex
def guided_regex_completion(client: OpenAI, model: str):
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
"End in .com and new line. Example result:"
"[email protected]\n")
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={
"guided_regex": r"\w+@\w+\.com\n",
"stop": ["\n"]
},
)
return completion.choices[0].message.content
# Guided decoding by JSON using Pydantic schema
class CarType(str, Enum):
sedan = "sedan"
suv = "SUV"
truck = "Truck"
coupe = "Coupe"
class CarDescription(BaseModel):
brand: str
model: str
car_type: CarType
def guided_json_completion(client: OpenAI, model: str):
json_schema = CarDescription.model_json_schema()
prompt = ("Generate a JSON with the brand, model and car_type of"
"the most iconic car from the 90's")
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_json": json_schema},
)
return completion.choices[0].message.content
# Guided decoding by Grammar
def guided_grammar_completion(client: OpenAI, model: str):
simplified_sql_grammar = """
root ::= select_statement
select_statement ::= "SELECT " column " from " table " where " condition
column ::= "col_1 " | "col_2 "
table ::= "table_1 " | "table_2 "
condition ::= column "= " number
number ::= "1 " | "2 "
"""
prompt = ("Generate an SQL query to show the 'username' and 'email'"
"from the 'users' table.")
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={"guided_grammar": simplified_sql_grammar},
)
return completion.choices[0].message.content
# Extra backend options
def extra_backend_options_completion(client: OpenAI, model: str):
prompt = ("Generate an email address for Alan Turing, who works in Enigma."
"End in .com and new line. Example result:"
"[email protected]\n")
try:
# The guided_decoding_disable_fallback option forces vLLM to use
# xgrammar, so when it fails you get a 400 with the reason why
completion = client.chat.completions.create(
model=model,
messages=[{
"role": "user",
"content": prompt,
}],
extra_body={
"guided_regex": r"\w+@\w+\.com\n",
"stop": ["\n"],
"guided_decoding_backend": "xgrammar",
"guided_decoding_disable_fallback": True,
},
)
return completion.choices[0].message.content
except BadRequestError as e:
print("This error is expected:", e)
def main():
client: OpenAI = OpenAI(
base_url="http://localhost:8000/v1",
api_key="-",
)
model = client.models.list().data[0].id
print("Guided Choice Completion:")
print(guided_choice_completion(client, model))
print("\nGuided Regex Completion:")
print(guided_regex_completion(client, model))
print("\nGuided JSON Completion:")
print(guided_json_completion(client, model))
print("\nGuided Grammar Completion:")
print(guided_grammar_completion(client, model))
print("\nExtra Backend Options Completion:")
print(extra_backend_options_completion(client, model))
if __name__ == "__main__":
main()