Offline Inference Neuron#
Source vllm-project/vllm.
1from vllm import LLM, SamplingParams
2
3# Sample prompts.
4prompts = [
5 "Hello, my name is",
6 "The president of the United States is",
7 "The capital of France is",
8 "The future of AI is",
9]
10# Create a sampling params object.
11sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
12
13# Create an LLM.
14llm = LLM(
15 model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
16 max_num_seqs=8,
17 # The max_model_len and block_size arguments are required to be same as
18 # max sequence length when targeting neuron device.
19 # Currently, this is a known limitation in continuous batching support
20 # in transformers-neuronx.
21 # TODO(liangfu): Support paged-attention in transformers-neuronx.
22 max_model_len=128,
23 block_size=128,
24 # The device can be automatically detected when AWS Neuron SDK is installed.
25 # The device argument can be either unspecified for automated detection,
26 # or explicitly assigned.
27 device="neuron",
28 tensor_parallel_size=2)
29# Generate texts from the prompts. The output is a list of RequestOutput objects
30# that contain the prompt, generated text, and other information.
31outputs = llm.generate(prompts, sampling_params)
32# Print the outputs.
33for output in outputs:
34 prompt = output.prompt
35 generated_text = output.outputs[0].text
36 print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")