Gradio OpenAI Chatbot Webserver#
Source vllm-project/vllm.
1import argparse
2
3import gradio as gr
4from openai import OpenAI
5
6# Argument parser setup
7parser = argparse.ArgumentParser(
8 description='Chatbot Interface with Customizable Parameters')
9parser.add_argument('--model-url',
10 type=str,
11 default='http://localhost:8000/v1',
12 help='Model URL')
13parser.add_argument('-m',
14 '--model',
15 type=str,
16 required=True,
17 help='Model name for the chatbot')
18parser.add_argument('--temp',
19 type=float,
20 default=0.8,
21 help='Temperature for text generation')
22parser.add_argument('--stop-token-ids',
23 type=str,
24 default='',
25 help='Comma-separated stop token IDs')
26parser.add_argument("--host", type=str, default=None)
27parser.add_argument("--port", type=int, default=8001)
28
29# Parse the arguments
30args = parser.parse_args()
31
32# Set OpenAI's API key and API base to use vLLM's API server.
33openai_api_key = "EMPTY"
34openai_api_base = args.model_url
35
36# Create an OpenAI client to interact with the API server
37client = OpenAI(
38 api_key=openai_api_key,
39 base_url=openai_api_base,
40)
41
42
43def predict(message, history):
44 # Convert chat history to OpenAI format
45 history_openai_format = [{
46 "role": "system",
47 "content": "You are a great ai assistant."
48 }]
49 for human, assistant in history:
50 history_openai_format.append({"role": "user", "content": human})
51 history_openai_format.append({
52 "role": "assistant",
53 "content": assistant
54 })
55 history_openai_format.append({"role": "user", "content": message})
56
57 # Create a chat completion request and send it to the API server
58 stream = client.chat.completions.create(
59 model=args.model, # Model name to use
60 messages=history_openai_format, # Chat history
61 temperature=args.temp, # Temperature for text generation
62 stream=True, # Stream response
63 extra_body={
64 'repetition_penalty':
65 1,
66 'stop_token_ids': [
67 int(id.strip()) for id in args.stop_token_ids.split(',')
68 if id.strip()
69 ] if args.stop_token_ids else []
70 })
71
72 # Read and return generated text from response stream
73 partial_message = ""
74 for chunk in stream:
75 partial_message += (chunk.choices[0].delta.content or "")
76 yield partial_message
77
78
79# Create and launch a chat interface with Gradio
80gr.ChatInterface(predict).queue().launch(server_name=args.host,
81 server_port=args.port,
82 share=True)