Installation with ROCm#
vLLM supports AMD GPUs with ROCm 6.2.
Requirements#
OS: Linux
Python: 3.9 – 3.12
GPU: MI200s (gfx90a), MI300 (gfx942), Radeon RX 7900 series (gfx1100)
ROCm 6.2
Note: PyTorch 2.5+/ROCm6.2 dropped the support for python 3.8.
Installation options:
Option 1: Build from source with docker (recommended)#
You can build and install vLLM from source.
First, build a docker image from Dockerfile.rocm and launch a docker container from the image. It is important that the user kicks off the docker build using buildkit. Either the user put DOCKER_BUILDKIT=1 as environment variable when calling docker build command, or the user needs to setup buildkit in the docker daemon configuration /etc/docker/daemon.json as follows and restart the daemon:
{
"features": {
"buildkit": true
}
}
Dockerfile.rocm uses ROCm 6.2 by default, but also supports ROCm 5.7, 6.0 and 6.1 in older vLLM branches. It provides flexibility to customize the build of docker image using the following arguments:
BASE_IMAGE: specifies the base image used when running
docker build
, specifically the PyTorch on ROCm base image.BUILD_FA: specifies whether to build CK flash-attention. The default is 1. For Radeon RX 7900 series (gfx1100), this should be set to 0 before flash-attention supports this target.
FX_GFX_ARCHS: specifies the GFX architecture that is used to build CK flash-attention, for example, gfx90a;gfx942 for MI200 and MI300. The default is gfx90a;gfx942
FA_BRANCH: specifies the branch used to build the CK flash-attention in ROCm’s flash-attention repo. The default is ae7928c
BUILD_TRITON: specifies whether to build triton flash-attention. The default value is 1.
Their values can be passed in when running docker build
with --build-arg
options.
To build vllm on ROCm 6.2 for MI200 and MI300 series, you can use the default:
$ DOCKER_BUILDKIT=1 docker build -f Dockerfile.rocm -t vllm-rocm .
To build vllm on ROCm 6.2 for Radeon RX7900 series (gfx1100), you should specify BUILD_FA
as below:
$ DOCKER_BUILDKIT=1 docker build --build-arg BUILD_FA="0" -f Dockerfile.rocm -t vllm-rocm .
To run the above docker image vllm-rocm
, use the below command:
$ docker run -it \
--network=host \
--group-add=video \
--ipc=host \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--device /dev/kfd \
--device /dev/dri \
-v <path/to/model>:/app/model \
vllm-rocm \
bash
Where the <path/to/model> is the location where the model is stored, for example, the weights for llama2 or llama3 models.
Option 2: Build from source#
Install prerequisites (skip if you are already in an environment/docker with the following installed):
For installing PyTorch, you can start from a fresh docker image, e.g, rocm/pytorch:rocm6.2_ubuntu20.04_py3.9_pytorch_release_2.3.0, rocm/pytorch-nightly.
Alternatively, you can install PyTorch using PyTorch wheels. You can check PyTorch installation guide in PyTorch Getting Started
Install Triton flash attention for ROCm
Install ROCm’s Triton flash attention (the default triton-mlir branch) following the instructions from ROCm/triton
$ python3 -m pip install ninja cmake wheel pybind11 $ pip uninstall -y triton $ git clone https://github.com/OpenAI/triton.git $ cd triton $ git checkout e192dba $ cd python $ pip3 install . $ cd ../..
Note
If you see HTTP issue related to downloading packages during building triton, please try again as the HTTP error is intermittent.
Optionally, if you choose to use CK flash attention, you can install flash attention for ROCm
Install ROCm’s flash attention (v2.5.9.post1) following the instructions from ROCm/flash-attention Alternatively, wheels intended for vLLM use can be accessed under the releases.
For example, for ROCm 6.2, suppose your gfx arch is gfx90a. Note to get your gfx architecture, run rocminfo |grep gfx.
$ git clone https://github.com/ROCm/flash-attention.git $ cd flash-attention $ git checkout 3cea2fb $ git submodule update --init $ GPU_ARCHS="gfx90a" python3 setup.py install $ cd ..
Note
You might need to downgrade the “ninja” version to 1.10 it is not used when compiling flash-attention-2 (e.g. pip install ninja==1.10.2.4)
Build vLLM.
For example, vLLM on ROCM 6.2 can be built with the following steps:
$ pip install --upgrade pip $ # Install PyTorch $ pip uninstall torch -y $ pip install --no-cache-dir --pre torch==2.6.0.dev20240918 --index-url https://download.pytorch.org/whl/nightly/rocm6.2 $ # Build & install AMD SMI $ pip install /opt/rocm/share/amd_smi $ # Install dependencies $ pip install --upgrade numba scipy huggingface-hub[cli] $ pip install "numpy<2" $ pip install -r requirements-rocm.txt $ # Build vLLM for MI210/MI250/MI300. $ export PYTORCH_ROCM_ARCH="gfx90a;gfx942" $ python3 setup.py develop
This may take 5-10 minutes. Currently,
pip install .
does not work for ROCm installation.
Tip
Triton flash attention is used by default. For benchmarking purposes, it is recommended to run a warm up step before collecting perf numbers.
Triton flash attention does not currently support sliding window attention. If using half precision, please use CK flash-attention for sliding window support.
To use CK flash-attention or PyTorch naive attention, please use this flag
export VLLM_USE_TRITON_FLASH_ATTN=0
to turn off triton flash attention.The ROCm version of PyTorch, ideally, should match the ROCm driver version.
Tip
For MI300x (gfx942) users, to achieve optimal performance, please refer to MI300x tuning guide for performance optimization and tuning tips on system and workflow level. For vLLM, please refer to vLLM performance optimization.